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Abstract

The proliferation of traffic sensing devices on motorways has spurred interest in data assimi-

lation in macroscopic traffic flow partial differential equations, such as the Lighthill Whitham

Richards (LWR) model. The empirical constitutive laws (fundamental diagrams) embedded

within these PDEs are uncertain and misspecified. We leverage a Bayesian model assessment

framework introduced in (Calderhead and Girolami, 2009) to robustly identify the most plau-

sible FDs accounting for the trade-off between model fit and complexity. This is achieved by

computing unbiased estimates of the marginal likelihood for each FD based on ideas from ther-

modynamic integration while sampling from the resulting power posteriors using a Metropolis

Hastings Markov Chain Monte Carlo algorithm. In recognition of the ML’s sensitivity to

prior diffusivity we also perform a sensitivity analysis of our ML estimates. We compare ten

constitutive laws and apply our methodology to synthetic data to identify their structural dif-

ferences. Finally, we validate the choice of FD in (Coullon and Pokern, 2020) by applying our

methodology to loop detector data from the M25 motorway.

Keywords: traffic constitutive laws, macroscopic traffic flow modelling, Bayesian

inference, marginal likelihood estimation, thermodynamic integration, Metropolis Hastings.
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Chapter 1

Introduction

Economic growth and urbanisation have significantly increased mobility patterns in cities such

as London. The increasing travel demand has posed serious challenges in modelling and reg-

ulating traffic flows. Intelligent Transportation Systems (ITS) are collections of hardware and

software technologies that address these challenges when optimising the flow of vehicles in

a network, increasing the network’s capacity to accommodate more vehicles, improving road

safety and mitigating against air pollution and greenhouse gas emissions (Rudskoy, Ilin, and

Prokhorov, 2021). An important consequence of the development of ITS is the proliferation of

traffic sensing devices ranging from stationary loop detector sensors installed on road networks

(Eulerian data) to probe devices installed on vehicles (Lagrangian data). This breakthrough in

sensing technologies has stimulated an area of research focused on reconciling traffic engineering

models with data. This coupling aims to deliver faster, safer solutions to the aforementioned

traffic management problems.

Traffic flow phenomena are represented at three different scales: microscopic,mesoscopic

and macroscopic. Microscopic models characterise individual agents (e.g. vehicles) and their

mutual interaction. In contrast, macroscopic models are coarse representations based on dif-

ferential equations (DEs) that describe averaging properties of vehicle movement. Mesoscopic

models link microscopic with macroscopic models by accounting for the stochasticity embedded

in agent interactions and averaging effects of macroscopic models. The scope of the literature

review is limited to macroscopic and microscopic inference, where components of the former

were studied in the first year while the latter shapes the future PhD direction detailed in

Chapter 4. We refer the reader to an extensive review of mesoscopic models in (Kessels, 2019,
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ch.3, 6).

1.1 Microscopic modelling

1.1.1 Existing models

Figure 1.1: Schematic of an agent-based model

called MATSim (Axhausen, 2016). Scenario

data corresponds to agent population and plan

synthesis from input supply and demand data,

execution refers to running the mobility simula-

tor, and scoring involves evaluating utility func-

tions. In re-planning agent plans are adjusted

according to their utility function and analyses

data are derived from the emergent structure of

agent dynamics.

The class of microscopic models contains fine-

grained representations of individual (agent)

dynamics and includes car-following models

(Nagatani, 2000; Zhao and Gao, 2005; Pan-

wai and Dia, 2005) and agent-based models

(ABMs) (Axhausen, 2016; Smith, Beckman,

and Baggerly, 1995). Car-following models

describe drivers following each other in a traf-

fic stream using a system of ordinary differ-

ential equations (ODEs) based on equations

of motion. Schedule-following models (Kieu,

Ngoduy, et al., 2019) extend car-following

models to account for the adherence of trans-

port modes (e.g. buses) to their proposed

schedule. Therefore, bus drivers aim to op-

timise their flow in a network while meeting

their proposed schedule at each bus stop. However, these models neglect the effect of multiple

transportation modes in traffic flow.

ABMs deal with multiple interacting modes in an urban transportation network.

People are treated as agents interacting dynamically and stochastically within an environment.

The environment comprises of a transportation network with land-use (supply) data. Agents

and their proposed activities are synthesised from household survey and travel diary (demand)

2



data. Plans are derived from each agent’s proposed activities that shape their movement in

the network. A mobility model simulates agent dynamics using queue-based models (vehicles

form queues depending on demand instead of following vehicles in front of them) and agent

utility functions are computed. Agents adjust their plans to maximise their utility before the

mobility simulator is run again. This procedure is repeated iteratively as shown in Figure 1.1

and relevant quantities such as traffic volumes are calculated in the analysis stage. Examples of

state-of-the-art ABMs are TRANSIMS (Smith, Beckman, and Baggerly, 1995) and MATSim

(Axhausen, 2016) where the latter is open-source whereas the former is not. A complete review

of the latest extensions on these models is provided in (Kagho, Balac, and Axhausen, 2020).1

1.1.2 Statistical inference

ABMs are better-suited in capturing the dynamics of complex urban environments compared to

their macroscopic counterparts reviewed in later sections. Yet, ABMs pose significant statistical

challenges during calibration (Banks and Mevin B. Hooten, 2021). We identify these challenges

in the review below and shape the PhD research objectives accordingly in Chapter 4. The scope

is limited to calibrating mobility simulators used in the execution stage of MATSim (see Figure

1.1). We refer the reader to (Fournier et al., 2018; Garrido et al., 2019) for a complete review

of statistical approaches to population synthesis feeding into scenario and data generation. We

hereby refer to mobility simulators as ABMs. Calibration approaches are broadly divided in

agent-driven and black-box-driven.

Agent-driven approaches model the time evolution of the state-space of individual

agents within a Markovian ABM that can be efficiently simulated. A suite of filtering algo-

rithms have been applied to assimilate data into ABMs in an online fashion (M. Wang and Hu,

2015a; Ward, Andrew J. Evans, and N. S. Malleson, 2016; Lux, 2018; Lueck et al., 2019; Clay,

Kieu, et al., 2020; Nick Malleson et al., 2020; Kieu, Nicolas Malleson, and A. Heppenstall, 2020;

Clay, Ward, et al., 2021; Ju, Heng, and Jacob, 2021). The non-linear nature of agent dynamics

1The industry sponsor company of this PhD (Arup) is working extensively with MATSim and therefore the

PhD will be focused on calibrating MATSim components.
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calls for non-Gaussian likelihoods which is why non-linear approximations of the Kalman filter

(KF) and particle filters (PFs) have been employed. The fundamental problem in agent-driven

approaches is scalability to high-dimensional agent state-spaces (Nick Malleson et al., 2020).

The problem is compounded when state-spaces are partially discrete and continuous. Assum-

ing N agents admitting M discrete values yields MN state cardinality (M. Wang and Hu,

2015a) which in turn demands exponentially more particles. Mixed state-spaces are modelled

by comparing two candidate filter realisations and updating the one achieving the highest ac-

ceptance ratio (Clay, Ward, et al., 2021) which further exacerbates the computational load

of density estimation. Moreover, global ABM parameters are also augmenting the state-space

(Kieu, Nicolas Malleson, and A. Heppenstall, 2020). Ignoring the computational overhead,

high-dimensional particle methods suffer from sample degeneracy and therefore impoverish-

ment (loss of diversity) as well as deprivation (deviation from true state) (Snyder et al., 2008).

(Kieu, Nicolas Malleson, and A. Heppenstall, 2020; Nick Malleson et al., 2020) proposed rough-

ening, jittering and diffusing particles to rejuvenate their diversity by adding Gaussian noise to

the particles’ state or parameters vectors. Yet, this requires noise level tuning as too high noise

can nudge particles away from true state whereas too low can have no effect on their diversity

(Nick Malleson et al., 2020). PF resampling strategies have also been revised. (M. Wang and

Hu, 2015b) employ a mixture of standard and component set resampling which leverages par-

ticle information across different agents. Regardless, there is no guarantee that good particles

survive. (Lueck et al., 2019) proposed a Metropolis Hastings (MH) step that preserves particle

and hence agent correlation. The acceptance ratio requires likelihood evaluations which may be

expensive to obtain for large particle sizes and mix slowly in high dimensions. Alternatively,

Gaussian state density approximations can circumvent particle degeneracy and deprivation.

The ensemble and unscented Kalman Filters (EnKF, UKF) (Ward, Andrew J. Evans, and

N. S. Malleson, 2016; Clay, Ward, et al., 2021) maximise posterior expressiveness with limited

particle sizes. The former applies the standard Kalman updates to an ensemble of randomly

initialised particles while the latter applies a predetermined unscented transform to a fixed

number of sigma points. UKF and EnKF with small ensemble size lead to posterior variance

shrinkage and call upon covariance inflation methods to quantify uncertainty, thus suffering
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from similar limitations to PFs. (Ju, Heng, and Jacob, 2021) have introduced Sequence Monte

Carlo (SMC) filters that exploit approximate proposals to efficiently explore the state-space at

linear in agent size costs and have illustrated their appealing achieved bias-variance trade-off.

This contribution assumes negligible ABM simulation cost does not address particle issues in

high-dimensions (e.g. more than 100 agents) where approximations for dimensionality reduc-

tion utterly fail. State-of-the-art SMC methods could potentially be more robust to particle

problems in large dimensions2.

Agent-driven approaches suffer from another drawback. ABMs are highly granular

whereas real data are coarse and cannot be attributed to individual agents making any agent-

level model inherently unidentifiable (Lueck et al., 2019; M. Hooten, C. Wikle, and Schwob,

2020). In transportation few vehicle trajectory data are accessible while aggregate traffic

volume datasets are richer (Dong, 2016). (Fintzi et al., 2016) dealt with a similar problem in

epidemiology by augmenting the latent space with agent-specific dynamics driven by coarse

data to account for model misspecification. Augmentation introduces poor MCMC mixing

problems in high dimensions and is therefore rendered infeasible for practical applications.

With the exception of (Fintzi et al., 2016), online filtering in Markovian ABMs has only dealt

with controlled model misspecification in the context of synthetic datasets only. Moreover,

existing approaches have not dealt with multi-resolution sensor fusion data which are prevalent

in transportation.

Black-box approaches treat the ABM as a simulator of unknown dynamics with lim-

ited access to parameter-output simulator pairs determined by a computational budget. Early

approaches in ecology (Hazelbag et al., 2020) and economics (Grazzini, M. G. Richiardi, and

Tsionas, 2017) employed optimisation routines (Hazelbag et al., 2020) such as genetic al-

gorithms (Rogers and Tessin, 2004; A. J. Heppenstall, Andrew J Evans, and Birkin, 2007)

and simulated annealing (Hara et al., 2013) which greedily explore “true” parameters with-

out maintaining a probability density over plausible parameters. Therefore, they may not

converge to global extrema if their optimisation objective is not smooth enough. (Grazzini

2This remains to be investigated.

5



and M. Richiardi, 2015; Grazzini, M. G. Richiardi, and Tsionas, 2017) obtained parameters

minimising a distance between data moments and moments simulated from the ABM under

different parameter regimes known as simulated minimum distance (SMD). Consistency of the

estimators is proven when the Markovian ABM is in an absorbing equilibrium and the derived

estimators are stationary and ergodic in real and simulated data. Such conditions cannot be

guaranteed when the ABM lacks analytical structure and thus have to be tested empirically,

limiting the applicability of SMD.

The ABM simulator has been emulated/approximated explicitly or implicitly via

likelihood or posterior approximations. Implicit approximations include likelihood/posterior

approximations (Xu, Dong, and Srihari, 2016; Dong, 2016; Grazzini, M. G. Richiardi, and

Tsionas, 2017; Radev et al., 2020; Zheng, Q. Han, and Lin, 2020; Shiono, 2021). (Grazz-

ini, M. G. Richiardi, and Tsionas, 2017) suggested kernel density estimation (KDE) of the

likelihood of stochastic ABMs with time series data. KDE can achieve the desired level of ex-

pressiveness and smoothness of multi-modal parameter distributions by appropriately choosing

kernels and their bandwidth. Nevertheless, KDE computations scale quadratically with the

number of ABM simulations and is therefore unsuitable for large-scale ABMs. (S. N. Wood,

2010) recommended a synthetic likelihood (SL), where extracted summary statistics are as-

sumed to be normally distributed with unknown parameter-dependent mean and covariance.

(Frazier et al., 2019) later extended synthetic likelihoods to a Bayesian setting. Although

the Gaussianity assumption is theoretically well founded, there is no guarantee of statistic

sufficiency without an explicit data likelihood and therefore SL suffers from the same prob-

lems as Approximate Bayesian Computation (ABC) which is reviewed later. Ratio estimation

(RE) formulated posterior inference as estimation of the likelihood to marginal likelihood ratio

r(x, θ) = p(x|θ)/p(x) or equivalently as a logistic classification of data as samples from the

either of the two terms. An optimal choice of a likelihood L(x|θ) ∝ r(x, θ) is the exponential

family of distributions. SL and RE have not yet been applied to ABMs with formidable pa-

rameter spaces and their posterior inference efficient has not been compared to other methods.

Another principled way of learning a likelihood constrained to a family of distributions
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is variational inference (VI). (Xu, Dong, and Srihari, 2016; Dong, 2016) obtained a variational

approximation of the latent posterior of discretised stochastic kinetic model (SKM). The choice

of approximating distribution is a critical aspect in VI and one which facilitates computational

efficiency. Therefore, scalability to large number of agents is not impeded. VI applied on

SKM was shown to be competitive to sampling-based methods which mix slowly and require a

large number of ABM simulations. (Radev et al., 2020; Shiono, 2021) used VI to approximate

posteriors of economic ABM parameters. This approach differs from VI-SKM in that the lat-

ter optimises the non-convex Bethe free energy subject to marginalisation and normalisation

constraints whereas the latter minimises the convex KL divergence between true and approxi-

mated posteriors. In the latter variational parameter learning is facilitated using normalising

flows constructed on invertible neural network (NN) outputs. Despite computationally effi-

cient, this approach relies on affine compositions of NNs to approximate an inverse mapping

from a Gaussian latent variable to the ABM parameters. Moreover, this approach relies on

aggregate data about individuals and does not propagate inference back to the individual agent

states.

Implicit likelihood representations are also leveraged in ABC by defining a discrep-

ancy measure between observed data and summary statistics constructed from ABM outputs

(Vaart et al., 2015; Lambert et al., 2018). The choice of sufficient (information-maximising)

summary statistics is far from trivial (Fearnhead and Prangle, 2010). Poor choice of statistics

leads to many rejections in rejection ABC sampling especially for small tolerance values (see

Chapter 2). (Radev et al., 2020; Shiono, 2021) used a bidirectional Long Short Term Memory

neural network (LSTM-NN) to extract summary statistics from time series data. Although

the network has necessary properties (e.g. permutation invariance) its construction is prone

to over-fitting due to large number of network weights needed to be learned. Moreover, the

quality of the summary network is not assessed independently of other model components and

not directly used in ABC sampling. (Pacchiardi and Dutta, 2020) applied VI to an exponen-

tial family of likelihoods of the form
exp(κ(θ)T s(x))h(x)

Z(θ)
. If the Kullback-Leibler (KL) divergence

between the true and approximated posteriors is zero then the summary statistics s(x) are

sufficient. These statistics were used in ABC sampling and achieved smaller KL divergences
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compared to ABC using NN learned statistics. However, the likelihood approximation is likely

to fail in stochastic, misspecified ABMs with non-identifiable parameters that induce multi-

modality in the resulting posterior.

In addition to parameters, ABMs embed constitutive laws (explained in later sections)

and complex agent interaction rules that can be learned (Kieu, Ngoduy, et al., 2019; Lu, Mag-

gioni, and Tang, 2021). The schedule-following bus simulator in (Kieu, Ngoduy, et al., 2019)

contains an empirical constitutive law between mean bus speed and schedule adherence. To

our knowledge, the effect of this law in the emergent structure has not been studied nor learned

directly from data except for the work of (Fuhg, Marino, and Bouklas, 2021) which employed

local approximate GPs in data-driven constitutive law learning embedded in elastomechanics

PDEs. Likewise, agent interactions have been ignored or assumed to be known a priori (Ju,

Heng, and Jacob, 2021). The novel approach of (Lu, Maggioni, and Tang, 2021) attempted to

learn heterogeneous (multi-type) agent interactions ingrained in discretised ODEs defining an

ABM as well as establish conditions for learnability. This approach has not yet been scaled to

large-scale ABMs with complex interactions.

A third approach to data assimilation involves extracting the macro-scale dynamics

from microscopic principles and performing inference on the former. In very niche cases DEs

can be derived from microscopic principles (Mevin B Hooten and C. K. Wikle, 2010).(Dong,

2016) leveraged a mean-field approximation that assumes agent state conditional independence

given the data. (Ju, Heng, and Jacob, 2021) posed a similar assumption in an epidemic ABM by

replacing agent infection and recovery rates with their population averages, inducing homogene-

ity in disease transmission probability. An increasing agent size translates into exponentially

more convoluted interactions between them (Nick Malleson et al., 2020) and thus mean-field

assumptions break down asymptotically. (Nardini et al., 2021) addressed this limitation and

proposed a novel equation learning framework for deriving differential equations directly from

time-evolving ABMs. The authors collect ABM samples for fixed parameters, pre-define a pool

of candidate basis functions (e.g. polynomials) to describe the time-evolving dynamics and

learn the basis functions’ coefficients using penalised regression methods. This new research
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area that has not been extensively developed. For example, derivations of PDEs/stochastic

DEs from space-evolving/stochastic ABMs have not been discovered yet.

Finally, we identify understudied open problems in ABM calibration. Incorporating

network of agent interactions has only been examined in (Heard et al., 2014; C. K. Wikle and

Mevin B Hooten, 2016). Dealing with ABM discontinuities and local phase transitions has not

been formally addressed yet (Bijak, Bullock, and Hilton, 2017). Also, AB model comparison

has not been performed and marginal likelihoods have been computed in small-scale ABMs

(Ju, Heng, and Jacob, 2021) where the likelihood is cheaply available. The computational cost

of simulating ABMs has left questions on which ABM components create certain emergent

structure and how a complex ABM can be maximally reduced without becoming vastly mis-

specified unanswered. Finally, simplistic and misspecified ABMs have mostly been considered

in the past with notable the exception of the epidemic model in (Andrianakis et al., 2017).

Therefore there is great potential in testing the developed statistical machinery to large-scale

ABMs such as MATSim (Axhausen, 2016).

1.1.3 Example: Epidemic ABM

Figure 1.2: Plate diagram of status transitions emerging from the SEIRD model’s agent inter-

action rules for an arbitrary cell.

We illustrate the previously identified statistical challenges in a stochastic contagion

ABM called Susceptible-Exposed-Infected-Recovered-Deceased (SEIRD) adapted to a 2D spa-
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tial grid (Lekone and Finkenstädt, 2006). Agent interaction rules are depicted in Figure 1.2.

Each cell can be empty (∅), occupied by an agent (individual) or possess special

properties. The possible agent states are:

• susceptible (S): agent is healthy but susceptible to catching and/or getting exposed to

the disease.

• exposed (E): agent is exposed to the disease but showing no symptoms, meaning that

it can already infect others when in contact and gets noticed as infected only after the

incubation period.

• infected (I): agent is infected and can infect neighbouring agents.

• recovered (R): agent is immune to the disease but can potentially lose it and become

susceptible again.

• deceased (D): agent is deceased and will replaced by an empty cell in the next time step.

States S,E ,I,R are summarised as living (L). The special cell states cannot be changed once

initialised and are the following:

• source (S): cell is an infection source and can transition neighbouring agents from S to

E .

• inert (I): cell that does not partake in any of the dynamics and can be used to model

spatial heterogeneities.

Agent interaction rules are assumed to be known a priori (see Figure 1.2) and are denoted by

A prob−−→ B meaning a cell (or its corresponding agent) transitions from state A to state B with

probability (w.p.) prob. Thereby we have:

• L p empty−−−−→ ∅,

• ∅ p susceptible−−−−−−−−→ S,
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• ∅ p immune−−−−−→ R,

• S p exposed−−−−−→ E or S p transmit(1−p random immunity)−−−−−−−−−−−−−−−−−−−→ I by virtue of neighbouring cells being in

states E , I,

• E p infected−−−−−−→ I,

• I p recovered−−−−−−−→ R,

• I p deceased−−−−−−→ D,

• R p lose immunity−−−−−−−−−→ S,

• D 1−→ ∅,

where p transmit(1− p random immunity) is the transmission probability from non-immune

neighbouring cells. Finally, a living agent moves:

1. w.p. p move randomly to a randomly chosen empty neighbouring cell, if there are any.

2. away from an infected neighbour to a randomly selected neighbouring empty cell, if there

are any.

SEIRD’s parameter vector is equal to the ten-dimensional vector of probabilities shown in

Figure 1.2. The cell state-space at time t is denoted by Xt = [X
(1)
t , . . . ,X

(N)
t ], where N is the

number of cells. The joint cell states are four-dimensional discrete (numerical and categorical)

and are listed below for each cell:

• status: ∅,S, E , I,R,D, S, I,

• age: cell age reset after it turns empty,

• exposed time: time steps a living cell has been exposed to the disease,

• immunity: whether or not cell is immune.
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Model output space X includes cell densities time series by type and cumulative event (status

transitions) counters listed above. Figure 1.3 depicts the emergent structure and stochasticity

of SEIRD on two simulations under the same parameter regime.

While SEIRD captures key dynamics in epidemics it still omits immunity, exposure,

and transmission control measures (e.g. vaccination, quarantine effects). Additional model

expressiveness can be achieved by encoding a network structure with supply data (e.g. hospi-

tals) but will render simulation computationally cumbersome as in (Andrianakis et al., 2017).

Increased model granularity may reduce model misspecification but will inevitably augment

the model’s parameter and agent state-space.

An agent-driven approach to inferring agent states and parameters would require

exploration of 6N state-space configurations (5 living statuses and 1 empty status for each

agent), which is infeasible for large N . Moreover, infection and deceased data are coarsely

available, susceptible or infected rates are not precisely known, the event space is sparsely

observed and few agent disease histories are available. The latent space defined by unobserved

quantities is enormous to be integrated over and therefore this approach is rendered impractical.

Black-box-driven approaches are better suited in the case of SEIRD. However, as

the cardinality of Θ increases (in complex extensions of SEIRD) it is not guaranteed that a

unique set of ‘true’ parameters will be recovered from a scarce dataset (potentially even in the

case of SEIRD). The choice of likelihood approximations becomes non-trivial as exponential

family distributions fail to capture multi-modality. Emulators may also encounter challenges

if the simulator variance is θ-dependent or if phase transitions occur in the simulator (e.g.

agent access to a neighbourhood of the grid is suddenly blocked to reflect quarantine effects).

Efficiently obtaining sparse non-stationary GP emulators is an open research problem. Finally,

summary statistics used in ABC need to be robust to the non-stationary nature of the output

time series shown in Figure 1.3, which is non-trivial if their sufficiency needs to be guaranteed

for parameter posterior inference.
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(d) Random seed is fixed to 100.

Figure 1.3: Cellular automata snapshots at time t = 500 on a 256x256 grid (top) and time

series of cell status counts/densities (bottom) based on two SEIRD realisations coloured by

cell status. Figures were generated using the Utopia library (Riedel et al., 2020).
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1.1.4 Relevance to MATSim calibration

MATSim faces more calibration challenges than SEIRD since the former is a large-scale uniden-

tifiable ABM with high-dimensional parameters and outputs (traffic analyses). Observational

data are multi-resolution (coarse Eulerian traffic volumes and fewer Lagrangian vehicle tra-

jectories), sparsely and partially available as in the SEIRD case. The agent environment is a

transportation network while the emergent agent dynamics are stochastic and potentially con-

tain phase transitions from agent re-planning (see Figure 1.1). The agent state-space is mixed

(discrete and continuous) and the simulator embeds a constitutive law. Similarly, we argue

that black-box-driven approaches are more promising for MATSim calibration and outline two

of them in Chapter 2.

1.2 Macroscopic modelling

Macroscopic traffic flow models define relationships between three traffic quantities: flow q

(number of vehicles per unit time), density k (number of vehicles per unit length) and average

speed u (average speed of vehicles on a road segment). Occupancy o ∈ [0, 1] of vehicles is

sometimes measured instead of density and is equivalent to the density normalised by the road

length. These quantities are measured by stationary sensors synchronised with traffic control

software such as Motorway Incident Detection and Automatic Signalling (MIDAS) (Morris,

1997) and Split Cycle Offset Optimisation Technique (SCOOT) (Bretherton, K. Wood, and

Raha, 1998). Depending on the emerging relationships among these three properties traffic

regimes are classified into free-flow and congested. The former regime is characterised by

vehicles moving at their desired speeds while the latter occurs when vehicles react to traffic

ahead, decelerating to avoid collisions.

Assimilating loop-detector data in a macroscopic model is an emerging challenge. One

such model is the Lighthill Whitham Richards (LWR) model (Lighthill and Whitham, 1955;

Richards, 1956) inspired by fluid dynamics models. LWR is a first-order hyperbolic partial
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differential equation (PDE) that expresses a conservation law relating the spatial concentration

of vehicles (i.e. traffic density k), the rate at which vehicles pass through a cross section of

a given road (i.e. traffic flow or flux q) and the average vehicle speed u. This deterministic

relationship is quantified in a continuity equation:

kt + u(k)kx = 0 ∀ t > 0, x ∈ R, (1.1)

where kt, kx are the partial derivatives of density with respect to time and space while q′(k) =

u(k) is an equilibrium constitutive law linking the derivative of flow with respect to density

(speed). Traffic density k(x, t) varies across space-time R × [0,∞). Space is assumed to be

one-dimensional to reflect the model’s assumption of a single-lane road with one entry/exit.

If q′(k) is a non-linear function of k then equation (1.1) is called non-linear. When

q′(k) is constant or a linear function of k(x, t) (1.1) becomes linear or quasi-linear, respectively.

The linear case reflects the assumption that vehicles move at constant speed u and traffic flow is

increasing with traffic density which is only suitable in a free-flow traffic regime. The non-linear

case corresponds to concave flow-density relationships explored in later sections.

LWR model’s conservative form captures abrupt flow changes e.g. traffic jams. De-

spite its widespread use, LWR has been criticised for assuming that drivers respond to local

changes in traffic density instantaneously according to q′(k). This is unrealistic given that

drivers respond to changing traffic conditions with a delay implying that u(x, t) also depends

on speed limits and road geometry traffic conditions. A mitigation against the LWR model’s

flaw was introduced in (Payne, 1971). Payne proposed coupling the continuity equation in

(1.1) with a “momentum conservation”-type equation:

vt +

C︷︸︸︷
vvx =

R︷ ︸︸ ︷
u(k)− v

τ
−

A︷︸︸︷
c2

0

k
kx, (1.2)

where v(x, t) is average vehicle speed and is part of the state vector (k(x, t), v(x, t))T , τ is

the relaxation time, and c2
0 = −dv(u)

dk
1
τ
> 0 is an anticipation constant describing the decreas-

ing rate of equilibrium speed with increasing density. In traffic dynamics momentum is not

conserved as vehicles collide, accelerate and decelerate. Equation (1.2) quantifies the delay in
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driver reaction to changing traffic regimes. Three terms are introduced: anticipation A(k, u),

convection C(k, u) and relaxation R(k, u). Convection describes the changes in average speed

due to changes in vehicle inflows/outflows. Anticipation characterises drivers’ anticipation of

downstream traffic density changes. More general anticipation terms include a diffusion term

uxx quantifying the change of vehicle acceleration over the space domain (drivers adjust their

acceleration depending on the acceleration of nearby vehicles) (S. P. Hoogendoorn and Bovy,

2001). Relaxation expresses the tendency of traffic to revert to equilibrium speed specified

by q′(k) after some delay τ . Payne-type models with diffusion terms violate a fundamental

traffic principle: vehicle anisotropy. Anisotropy refers to a vehicle’s ability to only respond

to downstream stimuli i.e. to vehicles in front of it. As a result of anisotropy, characteristic

waves (traffic information) travel faster than vehicles which is physically impossible (Coullon

and Pokern, 2020).

(Carlos F. Daganzo, 1995) critically reviewed Payne-type models showing how certain

initial value problems lead to physically implausible solutions such as vehicle queues “compress-

ing” from their rear end. The anisotropy problem was rectified in (Aw and Rascle, 2000) where

(1.1) was coupled with the following equation:

vt + p′(k)kt + v
(
vx + p′(k)kx

)
= 0, (1.3)

where p(k) is the traffic pressure constitutive law inspired from gas dynamics and is assumed

to be an increasing function of the density. Pressure can be roughly interpreted as driver

anticipation of traffic as its space derivative appears in anticipation terms of generalised Payne-

type models (S. P. Hoogendoorn and Bovy, 2001). A similar model is Zhang’s model (H. Zhang,

2002) which proposes the following acceleration equation:

vt + (v + kq′′(k))vx =
u(k)− v

τ
, (1.4)

Equation (1.4) yields characteristic speeds smaller than average vehicle speeds satisfying anisotropy.

On a parallel research front, single-lane scalar conservation laws have been generalised

to multiple lanes and vehicles classes (e.g. trucks, bikes). Notable mentions are the works of (S.

Hoogendoorn, 1999; Michalopoulos, Beskos, and Yamauchi, 1984; Carlos F. Daganzo, 1997).

16



Nevertheless, it can be argued that ABMs are better suited for modelling the dynamics of

different vehicle classes among multiple lanes due to their fine-grained nature.

Although the state-of-the-art traffic dynamic models may resolve issues such as anisotropy

and delayed driver reaction to changing traffic density, the resulting models may still be mis-

specified and therefore additional equations need to be empirically validated under different

traffic scenarios (e.g. stop and go waves created by changing traffic lights). The need for

empirical validation of model components does not invalidate the epistemic law of vehicle con-

servation encoded in all traffic PDEs. This need extends to empirical constitutive laws known

as fundamental diagrams (FDs) which are also misspecified and need to be scrutinised accord-

ingly. We introduce FDs, their desired properties and proposed functional forms in the next

section.

Another limitation of traffic flow models is their deterministic nature. Yet, they are

employed to describe spatio-temporal traffic waves generated from stochastic traffic phenomena

such as accidents on motorways. The attempt by (Polson and Sokolov, 2015) to discretise the

LWR model and add a Gaussian error term to account for stochasticity in the data is ad-hoc

for reasons that (Coullon and Pokern, 2020) pointed out. First, there is no guarantee that the

proposed numerical scheme converges to a specific stochastic PDE (SPDE) under refinement of

the discretisation grid. Second, the Gaussian error term does not necessarily preserve positivity

of the traffic density and violates the vehicle conservation law in (1.1). A “relaxation” of the

conservation law has been proposed in (Müller and Bock, 2020) who added a stochastic forcing

diffusion term (Brownian motion) to the LWR PDE. However, the proposed solution has only

been illustrated in contrived examples with stochastic forcing and does not generalise to non-

linear drift terms. To our knowledge, a traffic SPDE inverse problem has not been formally

introduced in generality yet.
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1.3 Traffic constitutive laws

The emergent relationship between traffic flow, density and average speed is called the funda-

mental diagram relationship (Greenshields, Thompson, et al., 1934). FDs are constitutive laws

derived from microscopic principles and/or empirical observations of traffic phenomena and are

embedded in microscopic and macroscopic models. There are three equivalent formulations

of FDs: flow-density (q(k)), speed-density (u(k)) and flow-speed (q(u)) relationships shown in

Figure 1.4. Equivalence follows by virtue of equilibrium (stationary) assumptions

q = ku. (1.5)

The nature of the FD relationship depends on road properties (e.g. number of lanes), vehicle

and driver composition (e.g. fraction of trucks, buses), external conditions (e.g. weather

and lighting conditions), and traffic laws (e.g. speed limits) (S. P. Hoogendoorn, Botma, and

Minderhoud, 2007). In a free-flow regime as vehicles concentrate on a road the number of

them exiting the road (or crossing a section of the road) increases until the road’s capacity is

reached (see maximum of top graph in Figure 1.4). A road’s capacity or maximal intensity is

the largest possible flow of vehicles achieved at the critical density (see maximum x-location

of top graph in Figure 1.4). The critical density is the density after which any additional

vehicle on the road contributes to congestion formation. Therefore, when “too many” vehicles

accumulate on the road the flow is reduced and eventually fades to zero in the case of a traffic

jam (vehicles are bumper to bumper). Traffic jams occur at jam density (see second roots of

top and bottom left graphs of Figure 1.4). The average vehicle speed is a decreasing function

of the density since a larger spatial concentration of vehicles leads to deceleration and lower

speeds. Average vehicle speed is equal to the free-flow speed under mild traffic congestion (see

y-intercept of bottom right graph of Figure 1.4). As more vehicles travel per unit of time the

average speed of vehicles is reduced to avoid collisions and reaches zero in the case of a traffic

jam.
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Figure 1.4: Idealised fundamental diagram relationships of flow-density (top), speed-density

(bottom left) and speed-flow (bottom right) obtained from (S. P. Hoogendoorn, Botma, and

Minderhoud, 2007)[ p.82]. Volume is equivalent to traffic flow.

1.3.1 Key properties and functional forms

Empirical studies of FDs have elicited assumptions that a FD should satisfy in theory. (Castillo,

2012a) provides an account of the most common FD properties:

• Strict concavity [P1]: q′′(k) < 0 ∀ 0 < k < kjam.

• Bounded speed [P2]: 0 < u < umax, where umax is the maximum free-flow vehicle speed.

• Bounded density [P3]: 0 < k < kjam where kjam is the traffic jam density (vehicles are

bumper to bumper).
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• Boundary speed [P4]: u(k = kjam) = 0, u(k = 0) = uf , where uf is the free-flow vehicle

speed.

• Boundary flow [P5]: q(k = 0) = 0, q(k = kjam) = 0 by virtue of (1.5).

• Boundary kinematic wave speed [P6]: dq
dk

∣∣∣
k=0

= uf ,
dq
dk

∣∣∣
k=kjam

= cf , where cf is the

kinematic wave speed at jam density.

Condition P1 is of high theoretical importance. In variational traffic flow theory

(Carlos F. Daganzo, 2005a; Carlos F. Daganzo, 2005b) the LWR model’s solution with a

strictly concave FD was shown to be equivalent to a set of all shortest wave paths in space-

time (x, t) starting from the boundary conditions. The set of wave paths are equivalent to the

set of kinematic waves defined by the characteristic curves Γ defined in Section 1.4. Theoretical

implications of a strictly concave FD have also been considered by (Ansorge, 1990) who showed

that P1 acts as an additional entropy condition for deriving physically relevant solutions to

the LWR model. Therefore, empirically evaluating the assumptions listed above is crucial for

determining LWR model misspecification.

Traffic engineers have proposed a number of FD models partially satisfying properties

P1 - P6. We list the ten most commonly used FDs in Table 1.1. In terms of their structural

similarities, DelCastillo’s negative power model (Q7(k)) is a close approximation to Daganzo’s

in the limit of ω → ∞ as shown in Figure 1.5. DelCastillo’s u and ω scaling parameters are

related to the critical density kcrit via

kcrit = (1 + uω/(ω+1))−1 (1.6)

Also, DeRomph’s model reduces to Smulder’s for α = kjam and β = 1. Relaxations of Smuder’s

and DeRomph’s models are considered that allow for a jump discontinuity to account for a phe-

nomenon called capacity drop. This phenomenon encapsulates the observation that a transition

from a free-flow traffic regime to a congested one achieves a higher maximum vehicle flow (ca-

pacity) than its reverse transition (S. P. Hoogendoorn, Botma, and Minderhoud, 2007)[ p.88].
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Name Model Parameters Reference

Greenshield’s Q1(k) = ufk
(

1− k
kjam

)
uf , kjam (Greenshields,

Bibbins, et al.,

1935)

Greenberg’s Q2(k) = ufk log
(
kjam
k

)
uf , kjam (Greenberg,

1959)

Underwood’s Q3(k) = ufk exp
(
− k
k0

)
uf , k0 (Underwood,

1961)

Northwestern’s Q4(k) = ufk

(
exp

(
−1

2

(
k
k0

)2
))

uf , k0 (Drake, Schofer,

and May, 1965)

Newell’s Q5(k) = ufk

(
1− exp

(
− λ
uf

(
1
k
− 1

kjam

)))
uf , kjam, λ (Newell, 1961)

Wang’s Q6(k) =
(
ufk
)
∗ 1/

(
1 + exp

(
k−kcrit

s

))
uf , kcrit, s (H. Wang, Li, et

al., 2011)

Daganzo’s Q7(k) =


qcrit
kcrit

k k < kcrit

qcrit
kjam−k

kjam−kcrit k ≥ kcrit

qcrit, kcrit, kjam (Carlos F Da-

ganzo, 1994)

DelCastillo’s Q8(k) = Z

[(
uf

k
kjam

)−ω
+
(

1− k
kjam

)−ω]−1/ω

Z, uf , kjam, ω (Castillo, 2012b)

Smulder’s Q9(k) =


ufk

(
1− k/kjam

)
k < kcrit

γk
(
1/k − 1/kjam

)
k ≥ kcrit

uf , kcrit, kjam, γ (Smulders,

1989)

DeRomph’s Q10(k) =


ufk

(
1− k/α

)
k < kcrit

γk
(
1/k − 1/kjam

)β
k ≥ kcrit

uf , kcrit, kjam, γ,

α, β

(De Romph,

1996)

Table 1.1: Fundamental diagram flow (q) - density (k) relationships with our naming conven-

tions and their associated parameters.
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Figure 1.5: DelCastillo’s four parameter fundamental diagram plotted for different values of

the ω scaling parameter and Z = 100,u = 3,kjam = 100.

1.4 Importance of fundamental diagrams

Moreover, the FD closes the vehicle conservation equation in (1.1). The FD also controls the

speed and direction of traffic wave propagation (Mynt-U and Debnath, 2007). Traffic waves

can be thought of as traffic information that is passed either upstream (away from a driver)

or downstream (towards a driver). Waves can originate from either traffic disturbances such

as traffic accidents or smooth traffic operation. Using the method of characteristics we can

identify paths in (x, t) space along which the solution k(x, t) to (1.1) is constant. We seek
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continuous solutions by computing the total differential

dk =
∂k

∂t
dt+

∂k

∂x
dx. (1.7)

Dividing by dt gives
dk

dt
=
∂k

∂t
+
∂k

∂x

dx

dt
= 0 (1.8)

along the characteristic curves Γ defined by

dx

dt
= q′(k). (1.9)

The characteristic curves Γ are curves along which the solution to the PDE is constant and are

always tangent to the solution surface k(x, t)− k = 0 in (x, t, k) space. According to (1.9), an

increasing q(k) corresponds to upstream wave propagation in a free-flow traffic regime while a

decreasing q(k) describes a congested regime of downstream wave propagation.

Solutions to non-linear traffic PDEs can “break” which yields discontinuous solutions

that violate uniqueness after some time t > T0 and renders the PDE ill-posed. The “breaking”

is evidenced by the appearance of shock waves that propagate with FD-governed speeds when

characteristic curves intersect. The shock wave shape is also affected by the choice of FD.

Empirically observations indicate that downstream shocks maintain their shape in propaga-

tion (Whitham, 1999). However, this is only captured by FDs that have a linear congested

form whereas FDs with non-linear congested regions smoothen the downstream shock’s shape

(Carlos F Daganzo, 1994). This motivates the need for evaluating the proposed FD functional

forms in 1.1 against data.

The importance of empirically validated fundamental diagrams extends to traffic plan-

ning and control (S. P. Hoogendoorn, Botma, and Minderhoud, 2007)[ p.83-84]. Determining

a road’s capacity at equilibrium is critical for evaluating the impact of features such as signs,

traffic lights and traffic policies such as diversion strategies on vehicle flow and density. More-

over, traffic flow, speed and density are related to travel time estimates. Such estimates play

a pivotal role in traffic assignment which consists of assigning travel routes to vehicles based

on an optimality condition such as travel-time minimisation. As a result, well-calibrated FDs

are integral to the performance of traffic forecasting systems.
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1.5 Problem statement

So far we have introduced a conservation law (traffic PDE) to model traffic wave propagation

in space-time and discussed its variants/extensions. While it can be argued that the LWR

model in (1.1) misspecifies traffic reality, the conservation of vehicles constraint is valid across

any single entry/exit road segment i.e. the conservation law is epistemic and uncertainty-free.

Conversely, constitutive laws such as FD relationships are empirical and uncertain as they rely

on assumptions P1 - P6 which may not necessarily hold in generality. Therefore, misspecified

FDs incur errors and uncertainty to PDE solutions which are amplified by the complexity and

dynamic nature of traffic phenomena. As a result, it is vital to remove any ad-hoc decisions

from FD model selection and quantitatively assess different model hypotheses based on their

complexity and ability to match data.

In the following section we discuss the state-of-the-art methodologies for calibrating

and comparing different FD models (constitutive laws) on data.

1.6 Related work

Empirical calibration and validation of constitutive laws has attracted significant attention in

the transportation literature. Despite the existence of significant contributions in assimilating

probe vehicle data (trajectory data from GPS devices) (Seo et al., 2019), we restrict our focus

on loop detector data due to their large spatio-temporal coverage of UK motorways. However,

it can argued that approaches that fuse Eulerian with Lagrangian data are better suited for

areas where sensor coverage or resolution is poor (Ambühl and Menendez, 2016; Neumann,

Böhnke, and Tcheumadjeu, 2013).

Constitutive law estimation approaches are split into non-parametric and parametric.

Non-parametric approaches make no assumptions of the form P1-P5. Instead, they allow data

to drive the shape of the FD. (Chen et al., 2004) leveraged a generalisation of principal com-

ponent regression from a family of lines to a family of curves called principal curves. Principal
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curve regression extracts the latent vector space “generating” the observed occupancy-speed

data along which the explained variance of the data is maximised. Although appealing this ap-

proach makes limiting assumptions about the data generating mechanism and suffers from three

deficiencies. Namely, the inability to predict flow responses for different values of the density

covariate, the absence of a complexity penalty term in the regression model, and the manual

filtering of outliers limit this approach’s ability to generalise to noisy loop detector datasets.

Figure 1.6: Schematic for parametric model

paradigm of constitutive law learning. The

model space is defined by the set of all plausi-

ble parameters consistent with the data space.

The solution space is the intersection of the

model and constraint spaces where the latter

is induced by the conservation law in (1.1).

Despite their flexibility, non-parametric

methods often fail at discriminating be-

tween flows in the free-flow and congested

regimes (S. H. Huang and Ran, 2003). In

recognition of this challenge (Einbeck and

Tutz, 2006) proposed extracting the lo-

cal modes of the conditional distribution of

speed given flow for different flow values

and fitting a regression curve over the col-

lection of modes. This is advantageous in

that probabilistic estimates of (un)congested

branch membership of data points are made

which enhances model interpretability in non-

parametric constitutive law estimation. Nev-

ertheless, the fitted curves are smooth rela-

tions in C1([0,∞)) instead of functions and

therefore cannot be embedded in conservation

laws. Another limitation arises from the ab-

sence of a regulariser in regression or a thor-

ough discussion of the trade-off between model complexity and data fit.

A Bayesian non-parametric model suitable for constitutive laws embedded within con-

servation laws is Gaussian processes which quantifies uncertainty about the data-generating

process. In the recent work of (Fuhg, Marino, and Bouklas, 2021) GPs were employed for
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surrogate modelling of a three-dimensional constitutive law in solid mechanics. Due to their

Bayesian nature, a GP’s marginal likelihood reward sufficient data fits while penalising model

complexity. The computational burden of fitting GPs was eased by leveraging a space-filling

experimental design technique to obtain representative subsets of stress-strain data. Although

constitutive laws have bounded constraints (in our case flow, density and speed are non-

negative), the function space of GPs is loosely constrained (e.g. space of smooth functions).

Recent GP model developments induce physical constraints on the GP posterior by apply-

ing compositions of transformations (Maroñas et al., 2020). However, to our knowledge this

methodology has not yet been applied to surrogate modelling of constitutive laws in traffic.

Figure 1.7: Schematic for model-free paradigm

of constitutive law learning. The solution space

is the intersection of the solution and con-

straints spaces where the latter is induced by

the conservation law in (1.1).

In the spirit of model-free ap-

proaches, a data-driven paradigm was intro-

duced by (Kirchdoerfer and Ortiz, 2016) in

computational mechanics and conceptualised

in Figure 1.7. The authors examined the elas-

ticity problem and inferred the material con-

stitutive law purely by identifying the stress-

strain data points closest to satisfying the

governing localisation and conservation laws

or a relaxation thereof. The resulting col-

lection of data points is compared against

commonly accepted material laws such as

Hooke’s law. The data-driven solver’s greedi-

ness was later alleviated in (Kirchdoerfer and

Ortiz, 2017) to account for the noise in mate-

rial datasets. Although a probabilistic data-

driven solver was developed, the solver has

yet to formally account for the uncertainty in material data in a statistical treatment of the

problem. We argue that a Bayesian treatment instill material law robustness to outliers. Also,

uncertainty-aware material laws can guide future experiments for material data collection by
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emphasising on uncertain areas of the stress-strain phase space.

The limited proliferation of non-parametric model-free methods in traffic constitutive

law estimation may be partly attributed to the lack of interpretable parameters such as the ones

appearing in their parametric counterparts. As a result, both GPs and model-free paradigms

lack the desired level of model interpretability that transportation engineers are interested in.

We conclude that the precise motivation for model-free methods in transportation literature is

lacking and make the case for a holistic evaluation of parametric approaches to FD estimation.

In contrast, parametric FDs have interpretable and operationally useful parameters.

The parametric paradigm is conceptualised in Figure 1.6. FD parameters are inferred based

on unconstrained minimisation of an L2 norm of the model error (Castillo, 2012b; Qu, S.

Wang, and J. Zhang, 2015). Least squares regression’s propensity to over-fitting (accepting

more complex model hypotheses than necessary) makes it inferior to any regression method

with a regularisation term such as a Tiknhonov regulariser (Golub, Hansen, and O’Leary,

1999). The same limitation applies to a weighted regression model proposed in (Jiang and

Y.-X. Huang, 2009) and (Knoop and Daamen, 2017) to learn FD parameters. The regression

model assigns weights to speed-density data in an ad-hoc manner or requires a large number

of weights to be learned without effectively penalising model complexity. An attempt to infer

the different mixtures of speed-density data via k-means clustering prior to applying locally

weighted regression is also made in (Jiang and Y.-X. Huang, 2009). The resulting hierarchical

model achieved no significant reduction in root mean square percent error (RMSPE) while

adding complexity to the modelling framework.

The deterministic error-minimising parameter estimation schemes have been replaced

by approaches that formally account for the stochasticity emerging from imperfect loop detec-

tor devices and complex traffic dynamics. The work of (H. Wang, Ni, et al., 2013) suggested

the use of infinite Karhunen-Loéve (KL) basis expansions which define a stochastic process in

square-integrable space L2(Ω) and is used to represent a stochastic FD. The stochastic FD is

decomposed into a deterministic part of the form found in Table 1.1 and a stochastic compo-

nent. The latter component is represented by an additive heteroscedastic error structure which
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is justified by empirical evidence that traffic flow variation varies with density. However, en-

forcing positivity via a multiplicative non-heteroscedastic structure is likely to capture enough

of that variation while also ensuring that the resulting FD is non-negative and therefore phys-

ically plausible. Also, least squares regression is used to relate FD parameters to circumvent

identifiability issues.

A similar probabilistic treatment of FDs is found in the works of (Polson and Sokolov,

2015) and (Coullon and Pokern, 2020), where they focus on inferring the latent space of traffic

densities “driving” traffic density observations. (Polson and Sokolov, 2015) learn that space

at each discretisation cell jointly with the parameters of Daganzo’s FD (see Q8(k) in Table

1.1) in an online (real-time) setting using a particle filter. Their choice of FD is solely justified

by its computational savings achieved in numerical solvers of the traffic PDE. The dynamic

learning of parameters yields a non-equilibrium (non-static) FD whose flexibility is limited by

its triangular shape. (Coullon and Pokern, 2020) solve the Bayesian inverse problem in an

offline setting instead. They employ a Poisson error model to account for vehicles appearing in

each of the four lanes of the road of interest, enforce positivity on the flow values and exploit

that the sum of independent and identically distributed (i.i.d.) Poisson random variables is

also Poisson distributed. Despite the benefits of this error structure, the model fails to account

for the apparent heteroskedasticity in the data. A direct fit of Daganzo’s and DelCastillo’s

models using a Random Walk Metropolis Hastings (RWMH) show a misfit to the data which

can be partly attributed to the Poisson error structure. The resulting congested flow waves do

not cross the (x, t) domain. Whereas there is still significant FD model misfit, the congested

flow waves appear in the domain when the FD is fitted to data by solving the inverse problem.

In terms of model validation and comparison of parametric FD forms, comparative

studies discuss the difference in the achieved RMSE, RMSPE or similar error metrics (Jiang and

Y.-X. Huang, 2009; Castillo, 2012a). Although these type of metrics are adequate for evaluat-

ing goodness-of-fit, they fail to account for model complexity and can therefore score complex

models highly. This limitation was acknowledged in (Castillo, 2012a) where the authors mo-

tivated the need to examine the plausibility each parameter. Granted that a probabilistic
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parameter treatment (Polson and Sokolov, 2015; Coullon and Pokern, 2020) allows for such

considerations, to our knowledge a probabilistic framework for constitutive model selection has

not been introduced in the literature yet.

On this end, we identify two main gaps in FD calibration and validation literature.

First, there is no systematic way of assessing traffic constitutive laws with regards to their

achieved trade-off between model complexity (dimension of parameter space) and data fit.

Secondly, model-free and non-parametric approaches outlined in (Kirchdoerfer and Ortiz, 2016)

and (Fuhg, Marino, and Bouklas, 2021), respectively, have not yet been applied to traffic

constitutive and conservation laws and their performance has not been appraised.

1.7 Current work and research objectives

In this report we address the first gap by following a Bayesian approach adopted in (Polson

and Sokolov, 2015; Coullon and Pokern, 2020), leveraging the robustness of the marginal

likelihood (ML) term to model complexity and therefore introducing a probabilistic framework

for systematically comparing parametric constitutive laws. We acknowledge the importance of

tackling both problems and argue that the former is a natural first step that can holistically

evaluate parametric FD estimation and clearly identify the need for non-parametric or model-

free approaches.

We improve the state-of-the-art traffic constitutive law validation by extending the

works of (Polson and Sokolov, 2015; Coullon and Pokern, 2020) and computing unbiased esti-

mates of the marginal likelihood leveraging concepts from thermodynamic integration and es-

timating the resulting tempered posteriors using a Metropolis Hastings algorithm (Calderhead

and Girolami, 2009). We highlight that the marginal likelihood inherently penalises complex

model hypotheses and rewards good data fits contrary to any other error-based metrics pro-

posed in the traffic literature. Our approach is to be contrasted with regularised regression in

that we rely on the prior specification to penalise model complexity while penalised regression

hinges on the choice of regularisation parameter(s). Moreover, our approach is probabilistic
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and accounts for the uncertainty in the data whereas penalised regression is deterministic.

The work of (Friel and Pettitt, 2008) discussed the marginal likelihood estimate’s sensitivity

to prior variance. In recognition of this limitation we compute marginal likelihood estimates

for three different prior specifications corresponding to diffuse, concentrated and “regular” pri-

ors. In doing so, we propose an adaptive MH proposal to efficiently sample from the tempered

posteriors. This methodology is applied to model calibration and comparison of the ten func-

tional FDs listed in Table 1.1 using both synthetic and real data from the UK’s M25 motorway.

Finally, we release our reproducible codebase in this GitHub repository.

This report aims to answer the following research question:

Which parametric constitutive laws embedded within traffic PDEs achieve the best trade-off

between model complexity and data fit?

The research question can be decomposed into the following research objectives:

1. Examine the structural differences between the proposed parametric FDs in Table 1.1.

2. Investigate the effect of prior diffusivity on the model evidence of the aforementioned

FDs.

3. Discuss the suitability of each model in modelling synthetic and real-world flow-density

data.

1.8 Synopsis

Chapter 1 introduced the societal need for assimilating data into transportation models and laid

out the foundations of microscopic and macroscopic traffic flow modelling. Statistical inference

in microscopic agent-based models is discussed and open problems for future research are

identified. Macroscopic traffic conservation and constitutive laws are introduced and critically

evaluated. The chapter ends with a review of the existing approaches to constitutive law

30

https://github.com/YannisZa/probabilistic_traffic_flow_modelling


estimation, an identification of two key literature gaps and a proposal to improve the state-of-

the-art parametric FD model assessment. In Chapter 2 we describe the statistical machinery

employed to obtain unbiased estimates of the marginal likelihood of constitutive laws in Table

1.1. We also introduce two black-box-driven approaches to ABM calibration that will be

leveraged in the rest of the PhD. In Chapter 3 we discuss our experimental results in response

to the aforementioned research objectives. Chapter 4 outlines a detailed plan and research

objectives for next the two years of research derived from the statistical ABM calibration

review.
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Chapter 2

Statistical methodology

The purpose of this Chapter is twofold: to describe the statistical methodology used in Chapter

3 to robustly assess constitutive laws and to introduce two black-box-driven approaches to ABM

calibration that will be used in the PhD.

2.1 Robust model assessment methodology

2.1.1 Bayesian inference

We define the vectors of FD flow and density data by q,k respectively where qi,ki correspond

to the i-th flow-density pair. We further denote the j-th fundamental diagram model of

consideration in Table 1.1 by Mj = Qj(k) and its associated parameters by θj. We begin

by assuming the following multiplicative error generative model about the noisy flow-density

relationship

log(qi) = log(qi(θj)) + log(εi), ∀i = 1, . . . , Nd, (2.1)

where ξi , log(εi) are assumed to be independent and identically distributed (i.i.d.) Gaussian

random variables ξi ∼ N(0, σ2), and log(qi(θj)) is the j-th FD (Qj(k)) evaluated at the i-th

density point using parameters θj. Therefore, the error distribution induces a distribution

p(q|Mj,θj) over the likelihood of the observed flow data conditional on the FD model output.

We can express the log-likelihood in log-data scale by applying the Jacobian transformation of
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log denoted by J(q)

p(q|θj) = p(log(q)|θj) det

∣∣∣∣∂ log(q)

∂q

∣∣∣∣
= p(log(q)|θj)

Nd∏
l=1

1

ql
(2.2)

where log(q|θj) ∼ N (log(q(θj)), σ
2I).

We follow a Bayesian approach and define a set of prior beliefs over the j-th FD

model parameters θj in the form of a probability distribution denoted by π0(θj). By Bayes

rule it follows that the posterior distribution over the FD parameters is equal to

π(θj|q) =
p(q|θj)π0(θj)∫
p(q|θj)π0(θj) dθj

, (2.3)

We have removed the dependence on Mj in the above equation for notational convenience. We

also note that the denominator term

p(q|Mj) =

∫
p(q|θj,Mj)π(θj|Mj) dθj (2.4)

is called model evidence or marginal likelihood (ML). The marginal likelihood encodes the

evidence provided by the underlying model hypothesis postulated by the constitutive law. The

plausibility of two model hypotheses can be objectively evaluated against data by using Bayes

factors:
p(Mj|q)

p(Ml|q)︸ ︷︷ ︸
posterior odds

=
p(Mj)

p(Ml)︸ ︷︷ ︸
prior odds

p(q|Mj)

p(q|Ml)︸ ︷︷ ︸
Bayes factor

, (2.5)

where the Bayes factor (BF) is the ratio of marginal likelihoods for models j, l ∈ {1, . . . , 10}. We

assume a uniform prior over the model universe M = {Qj(k) : j = 1, . . . , 10} of constitutive

laws and therefore the posterior odds equal the Bayes factor. This assumption reflects our

desire to remain agnostic about the most plausible constitutive law. Table 2.1 gives a scale for

interpreting BFs suggested in (Jeffreys, 1998, app. B).

2.1.1.1 Robustness of marginal likelihood

Furthermore, an intuitive explanation of the marginal likelihood can be obtained by considering

an approximation to the integral in (2.4) (Svensén and Bishop, 2007, ch. 3.4). Consider the
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log10(BF ) BF Strength of evidence

0 to 1/2 1 to 3.2 Not worth more than a bare mention

1/2 to 1 3.2 to 10 Substantial

1 to 2 10 to 100 Strong

> 2 > 100 Decisive

Table 2.1: Scale for interpreting strength of model evidence favouring Mj over Ml based on

log Bayes factors where Ml is the null hypothesis while Mj is the alternative one.

Figure 2.1: Schematic of idealised concentrated posterior around model θMAP
j and flat prior

distributions over parameter θj.

case when dim(θj) = 1 and θj = (θj). We assume a flat prior and a parameter posterior that

is concentrated around the posterior mode θMAP
j with width ∆θposterior as shown in Figure 2.1.

Therefore, we can approximate the integral as follows:

p(q|Mj) =

∫
p(q|θj,Mj)p(θj|Mj) dθj ≈ p(q|θMAP

j )
∆θposterior

∆θprior
, (2.6)
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where by prior flatness p(θj) = 1
∆θprior

. Taking logs in the expression above yields

log(p(q|Mj)) ≈ log
(
p(q|θMAP

j )
)

︸ ︷︷ ︸
data fit

+ log

(
∆θposterior

∆θprior

)
︸ ︷︷ ︸

complexity penalty

. (2.7)

The first term in the above equation quantifies the quality of data fit given by the most

plausible parameter configuration. The second term is negative when the ratio
∆θposterior

∆θprior
< 1

and increases in magnitude when that ratio becomes smaller. A large complexity penalty in

incurred when there is a small set of plausible parameters in the posterior distribution (narrow

posterior). In other words, for a given choice of data the model has a limited number of

parameter configurations that can explain that data well and is therefore more complex than

necessary. Equation (2.7) is extended to a multidimensional parameter vector as follows:

log(p(q|Mj)) ≈ log
(
p(q|θMAP

j )
)

︸ ︷︷ ︸
data fit

+
∣∣θj∣∣ log

(
∆θposterior

∆θprior

)
︸ ︷︷ ︸

complexity penalty

, (2.8)

where
∣∣θj∣∣ , dim(θj) is the number of parameters in model Mj. As the dimensionality of

the parameter vector increases so does the model complexity term in magnitude. However, a

complex model is likely to achieve an increase in the data fit term due to its added flexibility

in explaining the data. Therefore, a trade-off between between model complexity and data fit

emerges. Although the approximation in (2.8) is crude it provides sufficient intuition about

this trade-off when interpreting marginal likelihoods.

A further insight can be gained by examining how the marginal likelihood favours

models of intermediate complexity. Consider a distribution over possible datasets D and three

models M1,M2,M3 of increasing complexity. The datasets are generated by sampling from

the parameter prior θ(i) ∼ π0(θ) and then simulating p(D|θ(i)) ∀ i. Figure 2.2 illustrates

theoretical distributions over datasets for each of the three models. Simple models generate

datasets of limited variability that can be easily reproduced by other more complex models.

On the other hand, complex models can generate vastly dissimilar datasets that may not be

adequately represented by simple models. Given that the distributions in Figure 2.2 are nor-

malised, dataset D0 achieves the highest evidence for the model M2 of intermediate complexity.
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Figure 2.2: Schematic illustration of normalised distributions over datasets D for a simple, an

intermediate and a complex model M1,M2,M3, respectively. Dataset D0 achieves the highest

evidence under M2.
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This is because the simpler model poorly fits the data while the complex model’s predictive

distribution has high variance and so assigns small probability to each dataset. We note that

it is possible for the Bayes factor to misidentify the correct model in a finite dataset. That is a

why an expectation over the distribution of datasets has to be taken when computing BFs to

ensure that the correct model is identified on expectation (assuming the “true” model exists

in the model universe).

2.1.1.2 Comparison with R2

On the contrary, the goodness-of-fit (R2) criterion rewards complex models when used in model

selection. First, we derive the posterior predictive for model Mj

p
(
q̂|q,k,k∗

)
=

∫
p
(
q̂|q,k,k∗,θj

)︸ ︷︷ ︸
predictive likelihood

p
(
θj|q,k,k∗

)︸ ︷︷ ︸
posterior

dθj (2.9)

where k∗ are the given traffic densities at which the posterior predictive is evaluated at, Np

are the number of MC samples, and θ(n) ∼ p
(
θj|q,k,k∗

)
. We then compute the expectation

µ(q̂) , Eq̂|q,k,k∗ [q̂] =

∫
q̂ p

(
q̂|q,k,k∗

)︸ ︷︷ ︸
posterior predictive

dq̂

≈ 1

Np

Np∑
n=1

q̂(n), (2.10)

where q̂(n) ∼ p
(
q̂|θ(n)

j ,k,k∗,q
)

and θ
(n)
j ∼ p

(
θj|q,k,k∗

)
. Subsequently, R2 is computed as

follows:

R2 = 1−
∑Nd

l=1

(
ql − µ(q̂l)

2
)∑

(ql − q̄)2 , (2.11)

where q̄ , 1
Nd

∑Nd
l=1 ql.

2.1.2 Marginal likelihood estimation

In all but simple cases the marginal likelihood in (2.4) is intractable and numerical methods

have been employed to compute it (C. Han and Carlin, 2001). Traditional estimators such as
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the posterior harmonic mean (Raftery et al., 2006) and the prior arithmetic mean (McCUL-

LOCH and Rossi, 1992) estimators have been rendered unsuitable for ML estimation as they

introduce bias for finite samples.

We resort to a new way of estimating the ML based on ideas of path sampling or

thermodynamic integration (Gelman and Meng, 1998). In the remainder of this section we

assume that θj = θ. Let t ∈ [0, 1] be an auxiliary variable called temperature and define the

power posterior to be

pt(θ|q) ∝ p(q|θ)tπ0(θ) (2.12)

with a normalising constant equal to

z(q|t) ,
∫
p(q|θ)tπ0(θ) dθ. (2.13)

We note that by construction z(q|t = 0) = 1 since the prior normalised to one. Moreover,

z(q|t = 1) is the marginal likelihood in (2.4). It follows that

Eθ|q,t
[
log p(q|θ)

]
=

∫
log(p(q|θ)pt(θ|q) dθ

=
1

z(q|t)

∫
log(p(q|θ)p(θ|q)tπ0(θ) dθ

=
1

z(q|t)
d

dt

(∫
p(θ|q)tπ0(θ) dθ

)
=

1

z(q|t)
d

dt

(
z(q|t)

)
=

d

dt

(
log
(
z(q|t)

))
, (2.14)

where line 3 follows from dax

dx
= log(a)ax and by integral-derivative interchangeability. By

integrating (2.14) in the interval [0, 1] we get that∫ 1

0

Eθ|q,t
[
log p(q|θ)

]
=

∫ 1

0

d

dt

(
log
(
z(q|t)

))
dt = log(p(q)). (2.15)

By computing the ML on the log scale we ensure numerical stability of our estimates. Treating

t as a random variable with prior distribution p(t) allows us to sample jointly from p(θ, t):

log(p(q)) =

∫ 1

0

Eθ|q,t
[
log p(q|θ)

]
p(t)

p(t)
dt = Eθ,t|q

[
log p(q|θ)

p(t)

]
. (2.16)
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2.1.2.1 Thermodynamic integration

We discretise the integral over [0, 1]. We solve (2.12),(2.13) for π0(θ) and express and rearrange

the following equality

z(q|tn)p(θ|q, tn)

p(q|θ)tn
=
z(q|tn−1)p(θ|q, tn−1)

p(q|θ)tn−1

···
z(q|tn)

z(q|tn−1)
p(θ|q, tn) = p(q|θ)∆tnp(θ|q, tn−1) (2.17)

which we assume to hold for ∆tn , tn − tn−1 → 0 and 0 = t1 < · · · < tN = 1. We proceed

by taking logarithms, multiplying both sides by p(θ|q, tn) and integrating with respect to θ in

(2.17):∫
log

(
z(q|tn)

z(q|tn−1)

)
p(θ|q, tn) dθ +

∫
log
(
p(θ|q, tn)

)
p(θ|q, tn) dθ =

∆tn

∫
log(p(q|θ))p(θ|q, tn) dθ +

∫
log
(
p(θ|q, tn−1)

)
p(θ|q, tn) dθ

··· log

(
z(q|tn)

z(q|tn−1)

)
= Eθ|q,tn

[
∆tn log(p(q|θ))

]
+

∫
log

(
p(θ|q, tn−1)

p(θ|q, tn)

)
p(θ|q, tn) dθ, (2.18)

where the second term on the RHS is equal to the Kullback Leibler divergence KL(pn||pn−1) ≥

0. By discretisation of the integral we can derive an upper bound on the integral estimate

log(p(q)) =
∑
n

log

(
z(q|tn)

z(q|tn−1)

)

=
∑
n

Eθ|q,tn [log(p(q|θ))
]

∆tn︸ ︷︷ ︸
upper bound

−KL(pn||pn−1)︸ ︷︷ ︸
bias

 . (2.19)

We repeat this procedure to derive a lower bound on the integral estimate by multiplying

(2.17) by p(θ|q, tn−1) which yields a lower bound for the integral estimate

log(p(q)) =
∑
n

log

(
z(q|tn)

z(q|tn−1)

)

=
∑
n

Eθ|q,tn−1

[
log(p(q|θ))

]
∆tn︸ ︷︷ ︸

lower bound

+KL(pn−1||pn)︸ ︷︷ ︸
bias

 . (2.20)
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We note that in the limit of ∆tn → 0 the power posteriors pn,pn−1 will become indistinguishable

causing the bias KL(pn||pn−1)→ 0 and therefore

lim
∆tn→0

∑
n

Eθ|q,tn
[
log(p(q|θ))

]
∆tn →

∫ 1

0

Eθ|q,t[log(p(q|θ)]dt

By taking the average over the lower and upper bounds we derive the trapezium rule for

numerical integration of the marginal likelihood integral

log
(
p(q)

)
=

1

2

∑
n

∆tn

(
Eθ|q,tn

[
log
(
p(q|θ)

)]
+ Eθ|q,tn−1

[
log
(
p(q|θ)

)])
︸ ︷︷ ︸

approximation

+

1

2

∑
n

[
KL(pn−1||pn)−KL(pn||pn−1)

]
︸ ︷︷ ︸

bias

. (2.21)

It is evident that there are two sources of error in the estimation of the marginal

likelihood. First, the expectations in the approximation term entail a Monte Carlo sampling

error which is reduced based on the number of samples and the efficiency of the sampling

scheme. Second, the bias term can be diminished subject to a suitable dense temperature

schedule of tn’s.

2.1.2.2 Choice of temperature schedule

There are three popular choices of temperature schedule suggested in (Calderhead and Giro-

lami, 2009) and listed in Table 2.2. We select a prior temperature schedule with N = 30, p = 5

which achieves one of the lowest biases when computing MLs for linear models in (Calderhead

and Girolami, 2009). We note that successive temperature spacing ∆tn increases as the number

of temperatures increases. This means that the most dominant terms in (2.21) are traced in

high temperatures where the power posteriors are mostly dominated by the likelihood (assum-

ing a flat or non-informative prior) compared to posterior schedules which are prior-dominated

in high temperatures. An in-depth consideration of the choice of temperature is outside the

scope of this report.
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Name Schedule

Uniform ti = i
N

Prior ti =
(
i
N

)p
Posterior ti = 1−

(
i
N

)p
Table 2.2: Geometric-based temperature schedules suggested in (Calderhead and Girolami,

2009).

2.1.3 Posterior sampling

Metropolis Hastings Markov Chain Monte Carlo (MH-MCMC) sampling is employed to sample

from the target density p(θ|q, tn) ∀ n = 1, . . . , N . Equivalently, by conditional independence

between temperature conditionals it follows that

p(θ|q, t) ∝
N∏
n=1

π0(θ)p(q|θ)tn . (2.22)

Although it can be supported that more sophisticated MCMC schemes such as population

MCMC (Friel and Pettitt, 2008; Calderhead and Girolami, 2009) could be applied in our

case, we argue that a simple MH sampler with a carefully constructed proposal mechanism

could efficiently sample from the power posteriors. We note that the conditional independence

between p(θ|q, tn) facilitates sampling parallelisation across temperature MCMC chains. Also,

MH-MCMC is a special case of population MCMC with no global moves in the parameter

space. The MH-MCMC algorithm is outlined in Algorithm 1.

There is a number of design choices that have to be made. First, we need to select

appropriate priors that preserve the positivity of the constitutive law parameters in Table

1.1. By choosing priors that only provide support for R>0 does not solve the problem as

the transition kernel may propose negative samples. Therefore, we use Gaussian priors for

all parameters of the ten FDs of interest and transform them in log-space to ensure their

positivity following the approach of (Thawornwattana, Dalquen, and Yang, 2018). Thus, we

avoid reflecting proposals and reduce the effective samples generated and transform the prior
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Algorithm 1 Metropolis Hastings MCMC algorithm for sampling from joint target density

p(θ|q, t).

1: Function call: MH-MCMC(θ0,T (·, ·),t,p(t),N)

2: Input: Initial parameter vector θ0, transition kernel T (·, ·), temperature schedule t, tem-

perature distribution p(t), number of chains N .

3: Output: Samples (θ(i), ti) ∀ i = 1, . . . , N .

4: Initialise θprev = θ0 for all temperatures t.

5: for i ∈ {1, . . . , N} do

6: Sample from temperature distribution tnew ∼ p(t).

7: Propose new sample θnew ∼ T (·,θnew) for power posterior corresponding to tnew.

8: Evaluate acceptance ratio α′ = α(θnew,θprev)

9: Sample u ∼ Uniform(0, 1).

10: if α′ > u then

11: Accept new sample θ(i) ← θnew.

12: Update last accepted sample θprev ← θnew.

13: else

14: Reject new sample θ(i) ← θprev.

15: end if

16: end for

42



distribution by applying the Jacobian of the log transformation denoted by J(θ). Proposals are

generated in log-space and can therefore be kept positive by applying the exp transformation,

thus increasing our sampler’s efficiency. The general form of the log-transformed priors is

therefore

π0(log(θ)|φ)) = π0(exp(θ)|φ)) det

∣∣∣∣∂ exp(θ)

∂θ

∣∣∣∣ , (2.23)

where φ are the fixed prior hyper-parameters which are detailed in Appendix C.

Moreover, it is important to ensure that the transition kernel T (·, ·) has the target

density p(θ|q, t) as its unique stationary distribution. We outline three proposal mechanisms

used in our experiments to ensure efficient parameter posterior exploration and derive the

corresponding acceptance ratios.

1. Gaussian Random Walk (GRW)

T1(θnew,θprev) = N (θprev,Σprop), (2.24)

where Σprop is a diagonal matrix of step sizes for parameter space exploration. By

symmetry of the kernel we get that the acceptance ratio is equal to

α(θnew,θprev) =

transformed prior︷ ︸︸ ︷
π0(log(θnew))|J(θnew)|

likelihood︷ ︸︸ ︷
p(q|θnew)tn

π0(log(θprev))|J(θprev)|p(q|θprev)tn
. (2.25)

2. Truncated Random Walk (TRW)

T2(θnew,θprev) = δT (tn)π̃(θprev) + δT c(tn)T1(θnew,θprev), (2.26)

where δT (tn) is the delta function, π̃(θprev) = π0(log(θnew))|J(θnew)| is the transformed

prior density and T = {tn ∈ [0, 1] : tn ≤ t′} is the set of all temperatures less than a

threshold temperature t′. Since we cannot sample from the transformed prior directly we

use a Monte Carlo approximation to sample from the untransformed prior and then apply

the log transformation to our sample. This will lead to sample rejections because the

log of a negative sample cannot be taken. However, by carefully tuning the temperature

threshold t′ we manage to limit the rejection rate.
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Therefore, the acceptance ratio is equal to

α(θnew,θprev) =

transformed prior︷ ︸︸ ︷
π̃(θnew)

likelihood︷ ︸︸ ︷
p(q|θnew)tn

proposal︷ ︸︸ ︷(
δT (tn)π̃(θprev) + δT c(tn)T1(θnew,θprev)

)
π̃(θprev)p(q|θprev)tn

(
δT (tn)π̃(θnew) + δT c(tn)T1(θprev,θnew)

)
=


p(q|θnew)tn

p(q|θprev)tn
tn ≤ t′;

π̃(θnew)p(q|θnew)tn

π̃(θprev)p(q|θprev)tn
tn > t′.

(2.27)

This proposal is beneficial in that for low temperatures sample acceptance tends to one

and thus it is very efficient.

3. Mixed Random Walk (MRW)

T3(θnew,θprev) = (1− p(β ≤ tn))π̃(θprev) + p(β ≤ tn)q(θprev|θnew), (2.28)

where β ∼ Beta(α0, β0) ∈ [0, 1] and α0, β0 need to be tuned. The above proposal

mechanisms yields

α(θnew,θprev) =

transformed prior︷ ︸︸ ︷
π̃(θnew)

likelihood︷ ︸︸ ︷
p(q|θnew)tn

proposal︷ ︸︸ ︷(
1− p(β ≤ tn))π̃(θprev) + p(β ≤ tn)T1(θnew,θprev

)
π̃(θprev)p(q|θprev)tn

(
1− p(β ≤ tn))π̃(θnew) + p(β ≤ tn)T1(θprev,θnew)

) .

(2.29)

The aim is to control the proportion of samples drawn from the transformed prior and

the GRW proposal to achieve an “optimal” exploitation-exploration trade-off subject to

priors being appropriately set. T2, T3 tend to be more efficient and are used to sample

high dimensional parameter posteriors in the case of DeRomph’s FD for example. The

tuned proposal steps and parameters can be found on our GitHub repository.

2.1.3.1 Convergence diagnostic

The convergence of the MCMC chains is judged by inspection of the MCMC chains to ensure

proper mixing and computation of the Gelman and Rubin convergence diagnostic (Gelman and

Rubin, 1992) on ten parallel MCMC chains for every temperature. Assuming C parallel MCMC
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chains with N samples each and T temperatures we compute for all c = 1, . . . , C, t = 1, . . . , T

the chain mean after D burnin samples is

θ̄
(c)
t =

1

N −D

N−D∑
i=1

θ
(c)
i,t , (2.30)

and the total mean is

θ̄t =
1

C

C∑
i=1

θ̄
(c)
t . (2.31)

Next we compute the between-chain variance

Bt =
N −D
C − 1

C∑
c=1

(θ̄
(c)
t − θ̄t)T (θ̄

(c)
t − θ̄t) (2.32)

and the within-chain variance

s2
c,t =

1

N −D − 1

N−D∑
i=1

(θ̄
(c)
i,t − θ̄

(c)
t )T (θ̄

(c)
i,t − θ̄

(c)
t ),

Wt =
1

C

C∑
c=1

s2
c,t. (2.33)

Finally, we get the Gelman and Rubin criterion

Rt =
C−1
C
Wt + 1

C
Bt

Wt

∀ t = 1, . . . , T. (2.34)

A convergent chain would exhibit behaviour that results in Bt ↓ 0 and C → ∞, meaning

Rt → 1. Therefore, we claim that our sampler has converged if all temperature chains achieved

Rt ≈ 1.1. In practise, C need not be very large and we therefore fix it to L = 10.

2.1.4 Sensitivity analysis

Despite the fact that MLs are a robust way of assessing model quality in light of data they are

prone to prior specification (Friel and Pettitt, 2008). The authors showed that in the conjugate

case of a Gaussian prior and likelihood we get that

Eθ|q,tn=0

[
log
(
p(q|θ)

)]
→∞ (2.35)
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at the same speed as the prior’s variance. This effect is larger in low temperatures where the

power posterior is prior-dominated. Our choice of temperature schedule yields a significant

number of power posteriors where this effect is present. Our dense discretisation in low tem-

peratures mitigates this effect as shown in (2.21) due to the ∆tn term. However, we still need to

account for the prior diffusivity’s effect on the high temperature power posteriors. Therefore,

we vary our priors’ variance and get ML estimates for a diffuse (high variance), a “regular”

(medium variance) and an informative (low variance) prior as detailed in Appendix C.

2.2 Black-box-driven ABM calibration

2.2.1 Gaussian process emulation

Figure 2.3: Plate diagram of ABM emulation in line with the approach of (Kennedy and

O’hagan, 2001). Known and inferred quantities are coloured in light blue and yellow, respec-

tively.

The seminal work of (Kennedy and O’hagan, 2001) introduced a framework for learn-

ing a cheap surrogate/emulator of the computer model (in our case ABM) which we depict in

Figure 2.3. Let Y = [y1, · · · ,yn]T ∈ Rn×ny be observational data about a system under study
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e.g. disease epidemics. Under a generative viewpoint, observations are noisy realisations of

the true system dynamics ζ(X) where X = [x1, · · · ,xn]T ∈ Rn×nx is an input to the system.

We thus have ∀ i = 1, . . . , n

yi = ζ(xi) + ε, (2.36)

where ε ∈ Rn×ny is an observation error model. In the SEIRD example of Chapter 1, ζ(X) may

capture number of infected individuals as a function of say space-time input X. The unknown

true dynamics ζ are replaced by a misspecified stochastic ABM simulator η(X,θ) ∈ Rnη

where θ are a priori unknown ABM parameters (e.g. p immune in the SEIRD example). To

correct for ABM misspecification a stochastic model bias/discrepancy term δ(X) is introduced

∀ i = 1, . . . , n:

yi = η(Xi, θ̂) + δ(Xi)︸ ︷︷ ︸
ζ(Xi)

+εi, (2.37)

where θ̂ ∈ Rnθ is the (unknown) most plausible parameter configuration of the ABM.

We assume that η(·, ·) is computationally expensive and only N evaluations Z ∈

RN×nη of η(·, ·) can be obtained from an experimental design D = {(θ∗i ,X∗i ) : i = 1, · · · , N},

where X∗ need not be equal to input data X. A Gaussian process prior is placed on η, i.e.

η(X∗,θ∗) ∼ GP
(
µη(X

∗,θ∗),Ση

(
(X∗,θ∗), (X∗∗,θ∗∗)

))
,

with mean and covariance functions µη,Ση, respectively. Each covariance kernel has additional

hyper-parameters ψη that need to be learned. Similarly, a GP prior is placed on the stochastic

discrepancy term δ(X):

δ(X,X′) ∼ GP
(
µδ(X),Σδ(X,X

′)
)
,

with hyper-parameters ψδ. We denote input locations X,X∗,θ∗ by Ξ and kernel parameters

ψ = [ψη,ψδ]
T . The marginal likelihood of the observed and simulated data is

p(Y,Z|Ξ,ψ) =

∫
p(Y|Hθ,∆)p(Z|H∗)p(∆|X,ψ)p(Hθ,H

∗|θ,Ξ,ψ)p(θ)dH∗ d∆ dHθ dθ,

(2.38)

whereHθ = [η(Xi,θ), . . . , η(Xn,θ)]T , ∆ = [δ(Xi), · · · , δ(Xn)]T , andH∗ = [η(X∗1,Θ
∗
1), . . . , η(X∗N ,Θ

∗
N)]T .

The simulator’s stochasticity is assumed to be embedded in η and therefore a noise model links
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Z to H∗ in (2.38). The integral in (2.38) is intractable and so we will resort to approximations

such as random feature expansions (Marmin and Filippone, 2018).

Further development of this framework will be undertaken to account for sparse dis-

crete spatio-temporal and multi-resolution Y,Z (e.g. traffic volumes on network links and

vehicle trajectories) while refining the model discrepancy ζ(·). Parameter identifiability will

also be addressed since MATSim has large nθ.

2.2.2 Approximate Bayesian Computation

Figure 2.4: Plate diagram of the ABC framework. Known and inferred quantities are coloured

in light blue and yellow, respectively.

An approach that circumvents likelihood intractability issues is Approximate Bayesian

Computation (Beaumont, W. Zhang, and Balding, 2002) exhibited in Figure 2.4. Likelihood

evaluations are replaced by ABM simulations Z which are obtained by running η(X,θ) for N

parameters θ̃ = [θ(1), . . . ,θ(N)]T sampled from a prior π0(θ). We implicitly assume that the

data and ABM output model spaces are the same even though the latter is typically larger

1. Summary statistics s : X → D are constructed to reduce data and output model spaces

X ∈ Rnη to a lower-dimensional space D while minimising the information lost in the reduction.

The likelihood is replaced by an indicator function that ensures summary statistics are in the

vicinity of the observed data:

p(Y|θ,X) ≈
∫
1
(
ρ
(
s(η(X,θ)), s(Y)

)
≤ ε0

)
p(X|θ) dX, (2.39)

1This does not affect the validity of the arguments that follow.
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where ε0 is a tolerance value controlling ABC sample acceptances, ρ defines a discrepancy

measure and samples from p(η(X,θ)|θ) are obtained via ABM simulation. A rejection sampling

scheme from such a hard-threshold likelihood is very inefficient. Smooth generalisations of the

likelihood include

p(Y|θ,X) ≈
∫
Kh(‖s(η(X,θ))− s(Y)‖)p(X|θ) dX, (2.40)

where Kh are suitable chosen kernels of bandwidth h. However, even likelihood approximations

such as the one above rely on summary statistic sufficiency which ensures π(θ|Y) = π(θ|s(Y)).

Moreover, efficient sampling schemes have been also proposed (Cranmer, Brehmer, and Louppe,

2019). However, the choice of a sampling scheme is of inferior importance if either the kernel

or summary statistics are not robustly specified to ABM and/or error model misspefication.

Following (Schmon, P. W. Cannon, and Knoblauch, 2020) and (Dyer, P. Cannon, and

Schmon, 2021), we will examine different choices of summary statistics (e.g. path signatures)

and kernels (e.g. Wasserstein difference) to robustify ABM inference against misspecification

and the non-stationary nature of observational data (e.g. auto-correlated traffic volume time

series).
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Chapter 3

Experimental results

3.1 Experimental design

In this Chapter we critically evaluate each fundamental diagram in Table 1.1 with regards

to their achieved trade-off between model complexity and data fit. We first obtain unbiased

estimates of the log marginal likelihood using the Metropolis-Hastings algorithm to sample

from each power posterior in (2.21). The MCMC chains are run between 300,000 and 900,000

iterations with burnin between 30,000 and 100,000 depending on model complexity for all

parameters and temperatures. The Monte Carlo error in the log ML estimator in (2.21) is

quantified by running ten MCMC chains of length 10,000 in parallel for each temperature and

computing the mean and variance of the log ML estimators. We also compute the R2, posterior

predictive mean and standard deviation and corresponding residual plot for the full posterior

(t = 1) based on a “regular” (medium variance) prior specification. We first examine structural

differences between constitutive laws using synthetic data simulated from each FD and later

apply our method to real-world data from the UK’s M25 motorway, which facilitates model

validation against loop detector data. Our work is complemented by a sensitivity analysis of

the obtained ML estimates in both synthetic and real-world data applications.
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3.2 Synthetic data

3.2.1 Model comparison

The log marginal likelihood estimates and their associated Monte Carlo errors introduced in

the previous Chapter are summarised in Table 3.1. Row-wise maxima are highlighted in bold

to indicate the best model for each dataset. Note that the table has been broken into two

subtables for better visibility.

Table 3.1 is partially diagonally-dominated and off-diagonally dominated. This is a

clear indication that the proposed FD forms are not entirely dissimilar since if that was the

case then each FD would be the only model best able to reproduce data generated from itself.

Instead, DelCastillo’s and DeRomph’s models are able to reproduce or sufficiently emulate

traffic features from models such as Daganzo’s, Newell’s, Greenshield’s, and Smulder’s. We

proceed by examining pairs of similar in structure models.

Greenshield’s and Greenberg’s models are the two most simplistic models with two

parameters that control vertical scaling of the FD and the location of the second FD root

(traffic jam density). The former model assumes a symmetric flow-density relationship around

the maximum (road capacity) while the latter assumes a positively skewed1 relationship. Both

models achieve significant log MLs when applied to their respective simulated datasets. Green-

shield’s model yields another plausible fit for the only simulated dataset resembling a concave

quadratic FD on the entire density domain; Newell’s dataset (see Appendix B). However, Del-

Castillo’s model constitutes an arguably better alternative for Greenberg’s, Greenshield’s and

Newell’s data since DelCastillo’s achieved data fits compensate for its two extra parameters.

DelCastillo’s and Daganzo’s data are smoothed near-linear and piecewise linear respectively

and therefore a quadratic model such as Greenshield’s can only partially fit the data, scoring

lower in the log ML scale. Despite its low dimensional parameter space, Greenberg’s inabil-

ity to adjust its skewness accounts for the majority of its poor data fits and renders it an

1We borrow this term from statistics to describe FDs that have denser left than right tails.
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Inference model

Greenshield’s Greenberg’s Underwood’s Northwestern’s Newell’s

S
im

u
la

ti
on

m
od

el

Greenshield’s 176.09 ± 0.15 -84.91 ± 0.19 39.83 ± 0.04 138.08 ± 0.22 146.49 ± 0.06

Greenberg’s -47.03 ± 0.07 177.22 ± 0.02 72.78 ± 0.01 -0.64 ± 0.07 82.17 ± 0.12

Underwood’s -357.67 ± 0.16 -183.73 ± 0.23 172.89 ± 0.36 -87.88 ± 0.11 21.27 ± 0.17

Northwestern’s -380.13 ± 0.33 -210.5 ± 0.28 -133.89 ± 0.01 174.48 ± 0.05 -139.91 ± 0.08

Newell’s 141.88 ± 0.07 -33.61 ± 0.02 -0.04 ± 0.04 148.87 ± 0.14 176.9 ± 0.07

Wang’s -197.9 ± 0.29 -175.2 ± 0.24 -178.46 ± 0.02 -32.16 ± 0.06 -78.54 ± 0.06

Daganzo’s 46.54 ± 0.04 -136.58 ± 0.25 -78.05 ± 0.05 24.69 ± 0.08 113.82 ± 0.13

DelCastillo’s 3.39 ± 0.04 11.79 ± 0.05 -2.65 ± 0.03 159.08 ± 0.15 157.87 ± 0.2

Smulder’s -93.58 ± 0.1 2.4 ± 0.14 9.27 ± 0.1 82.75 ± 0.17 91.09 ± 0.15

DeRomph’s -319.38 ± 0.06 -268.34 ± 0.14 -134.92 ± 0.14 45.69 ± 0.24 -202.71 ± 0.2

Inference model

Wang’s Daganzo’s DelCastillo’s Smulder’s DeRomph’s

S
im

u
la

ti
on

m
od

el

Greenshield’s 142.65 ± 0.13 80.7 ± 0.04 178.14 ± 0.04 173.11 ± 0.03 176.3 ± 0.01

Greenberg’s 69.23 ± 0.04 14.13 ± 0.04 173.65 ± 0.04 -50.27 ± 0.01 141.21 ± 0.02

Underwood’s 126.27 ± 0.01 45.39 ± 0.03 49.48 ± 0.04 50.08 ± 0.01 155.34 ± 0.03

Northwestern’s 104.54 ± 0.28 -117.95 ± 0.08 -116.79 ± 0.04 -76.1 ± 0.06 162.55 ± 0.11

Newell’s 160.01 ± 0.10 109.08 ± 0.12 176.9 ± 0.05 152.86 ± 0.03 160.92 ± 0.01

Wang’s 175.52 ± 0.14 -36.87 ± 0.13 -35.68 ± 0.06 32.88 ± 0.06 142.11 ± 0.01

Daganzo’s 149.83 ± 0.21 176.25 ± 0.05 177.3 ± 0.04 115.03 ± 0.03 172.93 ± 0.12

DelCastillo’s 152.48 ± 0.14 137.9 ± 0.17 176.94 ± 0.03 159.91 ± 0.05 158.01 ± 0.05

Smulder’s 120.95 ± 0.07 138.18 ± 0.08 146.45 ± 0.02 175.57 ± 0.1 177.04 ± 0.21

DeRomph’s 77.34 ± 0.04 -190.22 ± 0.23 -186.72 ± 0.01 -76.79 ± 0.04 177.11 ± 0.02

Table 3.1: Unbiased estimates of the log marginal likelihood estimator in (2.21) and their

associated Monte Carlo error for every fundamental diagram model and simulated dataset.

Each row and column correspond to the FD model used to simulate flow data and the FD

model fitted to that data, respectively.
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Inference model

Greenshield’s Greenberg’s Underwood’s Northwestern’s Newell’s

S
im

u
la

ti
on

m
od

el

Greenshield’s 0.98 0.69 0.88 0.97 0.97

Greenberg’s 0.82 0.96 0.89 0.88 0.91

Underwood’s 0.04 0.53 0.98 0.85 0.9

Northwestern’s -0.2 0.29 0.77 0.99 0.71

Newell’s 0.97 0.62 0.79 0.97 0.98

Wang’s 0.59 0.62 0.07 0.9 0.82

Daganzo’s 0.92 0.18 0.6 0.9 0.97

DelCastillo’s 0.89 0.8 0.76 0.98 0.97

Smulder’s 0.76 0.83 0.81 0.95 0.95

DeRomph’s -0.96 -0.25 0.86 0.98 0.5

Inference model

Wang’s Daganzo’s DelCastillo’s Smulder’s DeRomph’s

S
im

u
la

ti
on

m
od

el

Greenshield’s 0.97 0.95 0.98 0.98 0.98

Greenberg’s 0.9 0.84 0.96 0.33 0.93

Underwood’s 0.98 0.93 0.93 0.94 0.98

Northwestern’s 0.99 0.79 0.79 0.92 0.99

Newell’s 0.98 0.96 0.98 0.97 0.97

Wang’s 0.99 0.9 0.9 0.96 0.99

Daganzo’s 0.98 0.99 0.99 0.97 0.98

DelCastillo’s 0.97 0.97 0.98 0.98 0.97

Smulder’s 0.96 0.97 0.97 0.98 0.98

DeRomph’s 0.99 0.6 0.59 0.94 1

Table 3.2: Fitted R2 values for every fundamental diagram model and simulated dataset. Each

row and column correspond to the FD model used to simulate flow data and the FD model

fitted to that data, respectively.
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oversimplified model hypothesis.

Another pair of similar in structure models is that of Underwood’s and Northwestern’s

models. Both FDs are two-parameter smooth partially concave models that control vertical

scaling and location of the maximum (road capacity). The latter has a faster growth and

decay rates in the free-flow and congested regions of the FD (before and after the location of

the maximum), respectively. Excluding the tails of the FD, Northwestern’s model shape can

resemble a symmetric around the maximum model more than Underwood’s does. Therefore,

it fits DelCastillo’s, Greenshield’s, and Newell’s data sufficiently well. Note that inference is

made in log space and therefore the existence of a second root in an FD model is irrelevant as

long as the right tail of the FD tends to zero at an appropriate rate. However, Northwestern’s

model has a faster growth rate but slower decay rate than a quadratic model and so the fit

to Greenshield’s simulated data is slightly poorer. DelCastillo’s data are similar to that of

a positively skewed quadratic FD that has near-linear tails (see Appendix B) and therefore

Northwestern’s model is able to yield a better model hypothesis for this dataset. Daganzo’s

data is a linear approximation of DelCastillo’s data and as a result a smooth approximation by

Northwestern’s model produces lower but still significantly high log ML (159.08 ± 0.15). The

subtle difference between Northwestern’s and Underwood’s decay rate enables the former to fit

Smulder’s and DeRomph’s data sufficiently well despite the existence of a jump discontinuity

in the two datasets. The jump discontinuity (capacity drop) can be partially emulated by

Northwestern’s model as reflected on the log MLs (82.75±0.17,45.69±0.24). DeRomph’s jump

in the data is considerably larger than Smulder’s which explains the discrepancy in the achieved

log MLs. We note that the only other model with a non-negligible model evidence for Smulder’s

and DeRomph’s data is Wang’s FD because it shares characteristics with Northwestern’s which

are elaborated on in a later paragraph. Underwood’s model is able to substantially outperform

Northwestern’s only when fitted to Greenberg’s and Underwood’s data. The positive skewness

(asymmetry) of Greenberg’s data can be better learned using Underwood’s model than its

counterpart. Despite the fact that Northwestern’s and Underwood’s are similar in functional

form they do not explain each other’s simulated data well as evidenced by the very low log MLs

(-87.88±0.11 and -133.89±0.01). This is because attempting to generate a tight fit of one model
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over the other model’s simulated dataset breaks the i.i.d noise assumption (the log model is

close to the data is some regions but quite far away in other regions). As a result, a higher noise

level model seems more plausible at first. However, this parameter setting does not contribute

significantly to the marginal MC likelihood sum in (2.21). The most dominant terms in the

sum come from parameter configurations that achieve an “averaging” effect where on average

the fitted model’s error is the same across the density domain. Despite comprising the most

dominant terms in (2.21), these types of configurations still generate relatively poor data fits

that result in low log MLs. Finally, both Underwood’s and Northwestern’s models insufficiently

explain Wang’s data because in the free-flow region Wang’s data grows near linearly while in

the congested region the data decay faster than either Northwestern’s or Underwood’s model

does.

In Chapter 1 we highlighted the similarity between DelCastillo’s and Daganzo’s mod-

els. The former is smoother, more flexible than the latter at the cost of one extra parameter

while the latter is triangular in shape and its parameters control vertical scaling, critical and

traffic jam densities. Therefore, DelCastillo’s FD systematically provides better data fits than

Daganzo’s. At the tails of the FD, DelCastillo’s model ranges from near-linear to quadratic

in shape. Daganzo’s is a coarse but not entirely poor approximation of data shaped like a

symmetric concave quadratic (e.g. Greenshield’s, Newell’s). Nevertheless, DelCastillo’s vari-

able smoothness makes it a better candidate model. DelCastillo’s skewness parameter u also

makes it a compelling model alternative for positively skewed data such as Greenberg’s. The

added model complexity from the extra parameter appears to be compensated for with better

data fits from DelCastillo’s FD. The only shortcoming in DelCastillo’s model is the inability

to adjust the slope in the congested part of the FD without tampering with the location of

the second root or the vertical scaling of the FD. Although Daganzo’s model can correct for

different slopes in the congested part, its piecewise linear nature is a serious drawback when

fitting to data generated from smooth models. Both Daganzo’s and DelCastillo’s models ex-

plain Smulder’s data sufficiently well due to the data’s non-convex shape on the entire density

domain. The existence of capacity drop in Smulder’s data is ultimately penalised by the likeli-

hood which reduces the two models’ evidence for Smulder’s data. Model evidence for the rest
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of the simulated datasets is ranked by the degree to which a near-linear model can approximate

the data in the congested parts. The only near-linear approximation that leads to a reasonable

log ML is that of Underwood’s data where the negative exponential decay is roughly modelled

by a near-linear model. Since DelCastillo’s model is more flexible in the free-flow region of the

FD, model fit displays the crude “averaging” effect described earlier. Hence certain regions of

the data are overestimated while others are underestimated leading to an overall poor fit. The

lowest log MLs are achieved in the cases of Northwestern’s and DeRomph’s data due to poor

model fit coupled with added model complexity and existence of a large jump discontinuity,

respectively.

In addition, Newell’s model is another flexible three-parameter FD model. Contrary

to the aforementioned models, Newell’s FD has a parameter for the traffic jam density and two

other parameters which jointly determine the vertical scaling, critical density, and skewness

of the graph. The model’s variable skewness facilitates fitting of near-symmetric around the

maximum data such as Greenshield’s, DelCastillo’s and Daganzo’s. Despite its flexibility, the

model’s vertical scaling cannot be tuned without affecting skewness. As a result, Newell’s

model can fit Greenberg’s data well but within a multiplicative factor. This leads to a lower

signal-to-noise ratio and subsequently lower log ML compared to the aforementioned datasets.

The concavity assumption on the entire density domain that is encoded in Newell’s model

implies that the model performs poorly on data that are generated from only partially concave

models. An exception is Smulder’s data that have a linear congested region and which Newell’s

model provides sufficient evidence for (91.09±0.15). The presence of a small jump discontinuity

in log-scale has a small impact on model fit even though the region above the data’s free-flow

region’s maximum is not captured at all. However, this model hypothesis is deemed plausible

due to the multiplicative noise structure of the models (or additive in log-space). When

approximating Underwood’s, Wang’s, Northwestern’s and DeRomph’s data Newell’s model

exhibits the aforementioned “averaging” effect and scores poorly on the log ML scale. This

effect is apparent at various degrees depending on the decay rate of the data in the congested

region and the presence of a large capacity drop.

56



Regarding Wang’s model, it is a partially concave model with variable skewness and

a free-flow region which is upper bounded by vfk. These features are sufficient for Wang’s to

be a competing model to Newell’s when modelling simulated data from concave models such as

Greenshield’s, Newell’s, Greenberg’s, DelCastillo’s datasets. The differences in model evidence

between Newell’s and Wang’s models are substantial but not conclusive as the ML is known

to be susceptible to prior diffusion. We discuss more details about this effect in Section 3.2.2.

The case for Daganzo’s data is notable since Wang’s model is able to fit the data better than

Newell’s for a larger set of parameter configurations thus contributing more to the MC sum in

(2.21). This is mainly attributed to parameter s which controls the model’s decay rate in the

congested region and impacts the maximum’s location. For the same reason, Wang’s is able

to mimic the behaviour of both Underwood’s and Northwestern’s. Wang’s model evidence for

Underwood’s data is substantially higher than the evidence for Northwestern’s data because

Wang’s is structurally closer to Underwood’s when kcrit ≈ 0. Also, the challenge of explaining

data with jump discontinuities is to an extent overcome due to the model’s ability to control

the decay in the congested region. However, the larger capacity drop (jump discontinuity)

coupled with a non-linear congested region admits less plausible parameter configurations and

renders Wang’s model less suitable for DeRomph’s data than for Smulder’s.

Finally, DeRomph’s and Smulder’s models are the only two capacity drop FDs and

are of piecewise nature. DeRomph’s model is a more general version of Smulder’s which can

be seen by setting α = kjam and β = 1. This observation is validated by the log ML of the

former model on the latter’s data (177.04±0.21). It is easy to verify that Smulder’s cannot

fit DeRomph’s data due to the minor structural discrepancy between the two models which

causes Smulder’s to fail to explain both free-flow and congested regions of DeRomph’s data.

Excluding DelCastillo’s data, DeRomph’s model significantly outperforms Smulder’s despite

having two additional parameters. We note that in the case of DelCastillo’s data, DeRomph’s

and Smulder’s FDs are arguably competitive models. A reason for Smulder’s marginally higher

log ML might be the effect of the prior diffusivity on the marginal likelihood, which we examine

at a later Section. The concave near-symmetric datasets of Greenshield’s, Newell’s and Da-

ganzo’s are adequately modelled by both Smulder’s and DeRomph’s. The discrepancy in model
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evidences for Greenshield’s data may also be attributed to prior diffusivity differences. In con-

trast, DeRomph’s model is likely a better candidate model for Newell’s and Daganzo’s data

because of the additional flexibility the model gains from parameters α and β. Both parame-

ters allow DeRomph’s to fit the marginally asymmetric Newell’s data better than the piecewise

quadratic and linear Smulder’s model. Parameter α grants DeRomph’s model the flexibility to

fit Daganzo’s piecewise linear data by horizontally stretching the quadratic component of the

model and obtain a good local linear approximation. Nevertheless, DelCastillo’s model pro-

vides a much simpler and plausible explanation of Greenshield’s, Newell’s and Daganzo’s data

and is ultimately the superior model in these three cases. Moreover, Greenberg’s distinctive

asymmetry is challenging to model with a linear congested region. That is why DeRomph’s

has the advantage of providing a smooth approximation of the congested region and on average

a larger number of plausible parameters than Smulder’s. However, DeRomph’s skeweness can

only be partially adjusted by jointly configuring vf , ρc, γ, α, β. Inadvertently, the vertical scal-

ing of the model is changed and Greenberg’s data can only be tracked within a multiplicative

factor. This renders DelCastillo’s a much more suitable model for Greenberg’s data. Data that

are generated from partially concave and convex models such as Northwestern’s, Underwood’s

and Wang’s are intuitively better explained by DeRomph’s model whose parameter β enables

it to become partially convex and closely fit these three datasets. DeRomph’s model evidence

is reduced when modelling very positively skewed data, such as Underwood’s data. The larger

the degree of positive skewness the smaller the region that DeRomph’s quadratic component

can explain and so the poorer the approximation of the data’s concave region from DeRomph’s

convex component. Naturally, Smulder’s linear component constitutes a coarse approximation

of convex regions of data and the quality of approximation is inversely proportional to the data

decay rate in the congested part of the graph.

Regarding Table 3.2, it is apparent that it cannot be used as a basis for selecting the

appropriate constitutive law for the data. As highlighted in previous Chapters, the coefficient

of determination R2 is susceptible to favouring complex model hypotheses such as DeRomph’s.

Indeed, DeRomph’s attains the highest R2 scores across all synthetic datasets despite its six-

dimensional parameter space. Although the row-wise maxima of Table 3.2 track those of Table
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3.1, there is significant confusion about the most suitable model in the cases of models such as

Wang’s, Smulder’s and DeRomph’s. Specifically, Wang’s appears to provide competitive fits

for Underwood’s, Northwestern’s and Newell’s data whereas Table 3.1 suggests otherwise. For

these reasons, the coefficient of determination and similar error-type metrics can be solely used

to assess model quality. A more robust way to assess the validity of the log ML estimates would

be to examine their sensitivity to prior specification, which we perform in the next Section.

3.2.2 Sensitivity analysis

Although the model evidence estimates allow us to discern the features of most parametric

constitutive laws of traffic, the effect of the prior’s diffusivity on the log marginal likelihood can

potentially obscure our judgement about the most plausible model for a given dataset. Table 3.3

depicts unbiased estimates of the log marginal likelihood for three prior variance specifications:

diffuse (high variance), informative (low variance) and “regular” (medium variance) as listed

in Appendix C. Row-wise maxima for each prior specification are highlighted in bold. We

limit our study to the most competitive models identified in the previous Section; Wang’s,

DelCastillo’s, Smulder’s and DeRomph’s FDs.

The resulting log ML ranges suggest that Greenshield’s data can be replicated equally

well by Smulder’s and DeRomph’s model in addition to DelCastillo’s FD. This can be verified by

identifying Greenshield’s model embedded in a similar form in both Smulder’s and DeRomph’s

FDs. Similarly, Daganzo’s data admits both DelCastillo’s and DeRomph’s model as plausible

model hypotheses. Indeed, for large enough α and β ≈ 1 DeRomph’s model can effectively

approximate Daganzo’s data. DelCastillo’s FD is a competitive model for Greenberg’s and

Newell’s data while DeRomph’s FD captures Smulder’s data equally as well as Smulder’s model

does. However, there are cases where the prior’s sensitivity does not have an impact on the

most plausible model. For example, Wang’s, Underwood’s and Northwestern’s, DelCastillo’s,

and DeRomph’s data cannot be adequately represented by any other model other than their

own.
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In light of the Tables 3.1,3.3 there is evidence supporting that the model universe of

parametric FDs can be maximally reduced to Wang’s, DelCastillo’s and DeRomph’s constitu-

tive laws. However, DeRomph’s is a six parameter model describing a two-dimensional phase

space and therefore it can be argued that despite its significantly better data fits it will likely

not generalise well to real-world noisy datasets. However, such conclusion needs to validated

against real-world data. We devote the next Section to an examination of the ten FDs in the

context of data from the UK’s M25 motorway.

Inference model

Wang’s Delcastillo’s Smulder’s DeRomph’s

Greenshield’s 141.49 ± 0.14,

142.54 ± 0.05,

144.85 ± 0.08

173.95 ± 0.16,

176.58 ± 0.05,

179.43 ± 0.01

173.4 ± 0.08,

174.33 ± 0.2,

178.5 ± 0.03

172.83 ± 0.09

176.19 ± 0.13,

178.29 ± 0.16

Greenberg’s 67.54 ± 0.14,

68.72 ± 0.03,

69.93 ± 0.03

169.73 ± 0.18,

172.71 ± 0.07,

175.13 ± 0.01

-31.09 ± 0.19,

-46.41 ± 0.21,

-50.53 ± 0.19

141.19 ± 0.09,

143.33 ± 0.1,

146.4 ± 0.01

Underwood’s 120.26 ± 0.09,

122.74 ± 0.09,

126.41 ± 0.01

47.53 ± 0.21,

49.49 ± 0.04,

55.79 ± 0.0

45.14 ± 0.21,

47.01 ± 0.06,

50.13 ± 0.03

154.04 ± 1.27,

157.24 ± 1.08,

162.37 ± 0.25

Northwestern’s 104.07 ± 0.16,

105.85 ± 0.13,

109.78 ± 0.01

-121.43 ± 0.25,

-118.61 ± 0.22,

-113.46 ± 0.0

-78.8 ± 0.3,

-77.08 ± 0.11,

-73.58 ± 0.01

159.39 ± 0.07

161.66 ± 0.39,

162.81 ± 0.15,

Newell’s 153.06 ± 0.2,

155.97 ± 0.07,

160.48 ± 0.03

172.03 ± 0.09,

175.0 ± 0.06,

180.4 ± 0.01

151.74 ± 0.22,

155.41 ± 0.02,

157.92 ± 0.03

156.33 ± 0.52,

159.85 ± 0.48,

162.98 ± 0.72

Wang’s 170.55 ± 0.37,

175.06 ± 0.1,

178.04 ± 0.03

-39.73 ± 0.23,

-36.91 ± 0.13,

-31.65 ± 0.0

28.21 ± 0.34,

29.7 ± 0.13,

33.25 ± 0.09

137.4 ± 0.32,

139.39 ± 0.34,

142.17 ± 0.18

Table 3.3 – continued in next page
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Table 3.3 – continued from previous page

Daganzo’s 147.89 ± 0.22,

151.06 ± 0.08,

156.97 ± 0.0

171.96 ± 0.21,

176.22 ± 0.07,

182.05 ± 0.0

106.01 ± 0.18,

108.81 ± 0.17,

115.91 ± 0.04

172.1 ± 0.25,

174.34 ± 0.14,

175.22 ± 0.04

Delcastillo’s 151.93 ± 0.09,

154.04 ± 0.11,

159.21 ± 0.01

172.22 ± 0.22,

174.84 ± 0.15,

178.46 ± 0.04

158.08 ± 0.18,

160.41 ± 0.17,

163.07 ± 0.15

152.21 ± 0.5,

155.85 ± 0.11,

159.28 ± 0.0

Smulder’s 117.58 ± 0.07,

119.59 ± 0.12,

122.63 ± 0.02

139.81 ± 0.51,

143.04 ± 0.09,

149.65 ± 0.0

170.51 ± 0.05,

172.64 ± 0.39,

176.07 ± 0.05

170.18 ± 0.32,

173.41 ± 0.23,

177.13 ± 0.09

DeRomph’s 76.5 ± 0.26,

78.17 ± 0.14,

81.04 ± 0.05

-191.64 ± 0.09,

-189.46 ± 0.02,

-185.08 ± 0.0

-77.54 ± 0.14,

-75.88 ± 0.21,

-71.54 ± 0.06

170.92 ± 0.33,

172.6 ± 0.13,

181.33 ± 0.08

Table 3.3: Sensitivity analysis of the unbiased estimates of the log marginal likelihood estimator

in (2.21) and their associated Monte Carlo error for every fundamental diagram model and

simulated dataset. Each cell’s values correspond to a diffuse, “regular” and informative prior

specification of the same model and data.

3.3 M25 motorway data

In this section we examine loop detector data from Highways England’s MIDAS 2007 dataset

that was also used in (Coullon and Pokern, 2020). Data were collected for 8th January 2007

between 6:21am and 7:09am (inclusive) from a 5km four-lane section of the M25 motorway.

The authors extracted density from occupancy and speed measurements averaged every minute

for each of the eight fault-free loop detectors installed on the road and spaced every 500m.

However, both methods of deriving density rely on unrealistic assumptions. Density from

speed data does not account for different vehicle sizes while density from occupancy depends
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on different ways of obtaining average vehicle length. We use density data from occupancy

as the authors in (Coullon and Pokern, 2020) derive average vehicle length estimates every

minute from vehicle type information included in the MIDAS dataset. All road lanes and loop

detectors are leveraged to ensure good coverage of the density domain.

3.3.1 Model comparison

M25 data

Diffuse prior “Regular” prior Informative prior

In
fe

re
n

ce
m

od
el

Greenshield’s 147.5 ± 0.11 149.1 ± 0.01 150.96 ± 0.05

Greenberg’s 319.43 ± 0.07 319.5 ± 0.05 321.29 ± 0.06

Underwood’s 317.14 ± 0.1 319.16 ± 0.13 322.26 ± 0.03

Northwestern’s 251.09 ± 0.12 253.12 ± 0.02 255.24 ± 0.03

Newell’s 335.1 ± 0.03 337.48 ± 0.08 340.35 ± 0.05

Wang’s 334.0 ± 0.1 335.79 ± 0.14 337.84 ± 0.06

Daganzo’s 154.72 ± 0.05 156.07 ± 0.04 157.46 ± 0.04

DelCastillo’s 337.58 ± 0.15 340.43 ± 0.1 342.94 ± 0.05

Smulder’s 293.7 ± 0.03 296.99 ± 0.04 299.96 ± 0.14

DeRomph’s 289.48 ± 0.07 291.42 ± 0.17 293.42 ± 0.08

DeRomph’s continuous 293.74 ± 0.08 295.49 ± 0.07 296.84 ± 0.02

Table 3.4: Unbiased estimates of the log marginal likelihood estimator in (2.21) and their

associated Monte Carlo error for every fundamental diagram model applied on the M25 dataset.

Each row corresponds to the FD model used to simulate flow data for three different prior

specifications (diffuse,“regular”,informative) while each column corresponds to the respective

FD model fitted to that data.

Table 3.4 summarises the unbiased estimates of the log marginal likelihood for the FDs in Table

1.1 applied on the M25 data. The three most plausible models are DelCastillo’s, Newell’s and
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Wang’s FDs. Their corresponding data fits and residual plots are shown in Figure 3.1. The

better model evidence achieved by DelCastillo’s FD across the three prior specifications may

be attributed to its ω parameter which can change the smoothness of fit without affecting

other FD features such as road capacity. However, it can be argued that a different choice of

priors could weaken the evidence supporting the superiority of DelCastillo’s model over the

other two FDs. In fact, Table 3.5 and Figure 3.1 indicate that three three best models explain

the same amount of variance in the data. Wang’s model’s goodness of fit can be explained by

its ability to capture the early saturation of traffic and adjust the decay rate in the congested

region of the graph depicted in Figure 3.1. The analysis of the structural differences amongst

the FDs suggests that Newell’s features can be adequately replicated by DelCastillo’s FD (see

relevant columns in Table 3.1). Therefore, a preference of Wang’s and DelCastillo’s models over

Newell’s can be sufficiently justified. Nevertheless, the achieved R2 of 0.65 is not significantly

high. The residual plots in Figure 3.1 illustrate a degree of heteroskedasticity in the data which

implies that the multiplicative error structure may be insufficient to model real-world data.

Uncertainty quantification alleviates the posterior predictive mean’s inability to capture the

flow scatter. However, the estimated credible interval is overestimated and underestimated

for low and high density values, respectively. This effect can also be mitigated when using a

heteroskedastic error structure.
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M25 data

In
fe

re
n

ce
m

od
el

Greenshield’s 0.08

Greenberg’s 0.62

Underwood’s 0.62

Northwestern’s 0.46

Newell’s 0.65

Wang’s 0.65

Daganzo’s 0.11

DelCastillo’s 0.65

Smulder’s 0.57

DeRomph’s 0.56

DeRomph’s continuous 0.56

Table 3.5: Fitted R2 values for every fundamental diagram model applied on the M25 dataset.

Each row and column correspond to the FD model used to simulate flow data and the FD

model fitted to that data, respectively.

In addition, Greenberg’s and Underwood’s models achieve marginally poorer data fits

of R2 = 0.62. Both FDs have two parameters and are positively skewed, which allows them

to track the fast growth of the data in the free-flow region. Indeed, the sensitivity analysis in

Table 3.4 renders them hardly distinguishable. We note that despite Northwestern’s similarity

to Underwood’s FD, the former has a faster decay rate and subsequently performs poorer than

the latter.

Moreover, Smulder’s and DeRomph’s are overly complex model hypotheses as their

fits do not compensate for the additional parameters. Even though the MCMC chains for

DeRomph’s tempered posteriors converged, we encountered identifiability issues for parameters

uf and α in the likelihood-dominated tempered posteriors. This occurred because the congested

part of the model dominated the data fit and obviated the free-flow-dependent parameters.

Although a different choice of temperature schedule could potentially mitigate the impact of
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parameter identifiability on the marginal likelihood, it is likely that it will increase the Monte

Carlo error of the log ML estimates as illustrated in (Calderhead and Girolami, 2009). Hence,

we make the model identifiable by enforcing continuity at the critical density kcrit and ensure

positivity of α by introducing the following constraints:

α =
kcrituf

uf − γ
(
kjam−kcrit
kjamkcrit

)β (3.1)

uf ≈ γ

(
kjam − kcrit
kjamkcrit

)β

(3.2)

Constraint (3.1) allows us to reduce the parameter space to θ = (kcrit, kjam, γ, β, σ
2). Con-

straint (3.2) ensures α→∞ which corresponds to a near-linear approximation of the free-flow

region for small kcrit and subsequently guarantees a unique global maximum (capacity). Tables

3.4,3.5 include the original DeRomph’s FD and its reduced version for completeness. We note

that DeRomhp’s model reduction does not yield Smulder’s model since the latter is allowed to

be discontinuous. The identifiable version of DeRomph’s achieves a slightly higher log ML due

to parameter reduction but not a better data fit than its non-identifiable counterpart. Given

DeRomph’s identifiability issues we argue that DeRomph’s model may fail to generalise well

to other loop detector datasets despite its apparent flexibility highlighted in the synthetic data

comparisons.

Finally, Greenshield’s and Daganzo’s FDs yield very poor fits due to their rigid struc-

tures (symmetric quadratic and piece-wise linear, respectively) and are therefore excluded from

consideration of the most plausible constitutive law. In conclusion, taking into account Ta-

bles 3.1,3.4,3.5 and Figure 3.1 a suitable choice of model for M25 data accounting for model

complexity and fit would be DelCastillo’s or Wang’s FDs.

3.4 Discussion

In conclusion, the synthetic data experiments in Section 3.2 allowed us to maximally reduce the

model universe of parametric fundamental diagrams to Underwood’s, Northwestern’s, Wang’s,
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(a) Newell’s FD posterior predictive plot.
(b) Newell’s FD mean posterior predictive residual

plot.

(c) Wang’s FD posterior predictive plot.
(d) Wang’s FD mean posterior predictive residual

plot.

Figure 3.1: Log posterior predictive mean, 2-standard deviation credible interval (left) and

residual plots for the three fundamental diagrams achieving the highest log marginal likelihood

estimates when applied to the M25 data in log scale (right).
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(e) DelCastillo’s FD posterior predictive plot.
(f) DelCastillo’s mean FD posterior predictive

residual plot.

Figure 3.1: Log posterior predictive mean, 2-standard deviation credible interval (left) and

residual plots for the three fundamental diagrams achieving the highest log marginal likelihood

estimates when applied to the M25 data in log scale (right) [continued].

DelCastillo’s, DeRomph’s models, which are maximally dissimilar in structure. However, the

fitting of FDs in M25 data suggested that the trade-off between model complexity and data fit

is not the same for all models. We conclude that DeRomph’s FD may be an overly complex

model hypothesis for two-dimensional phase spaces while Underwood’s and Northwestern’s

FDs may be too simplistic. We also argue that the desired model complexity of fundamental

diagrams is between two and four parameter models. The application of our methodology to

M25 data allows us to validate the choice of DelCastillo’s FD as the appropriate constitutive

law in the work of (Coullon and Pokern, 2020). Furthermore, Table 3.6 outlines which of the

six common FD properties outlined in Chapter 1 are satisfied by each FD model considered.

It is evident that these criteria are not necessary for a model to achieve a sufficient model

complexity and data fit trade-off. For example, DelCastillo’s FD satisfies all properties while

Wang’s satisfies only one. However, not all of the examined constitutive laws yield physically

plausible solutions to the PDE in (1.1). Fundamental diagrams not satisfying property P6 may

fail to propagate traffic waves with appropriate speeds. Therefore, constitutive laws validated
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against data may yield implausible solutions for all or a subset of parameter configurations.

Even models such as DelCastillo’s need to be carefully treated to ensure that traffic waves

cross the domain of interest as in (Coullon and Pokern, 2020). Our proposed methodology for

empirical validation of constitutive laws needs to incorporate a data plausibility criterion to

ensure physically interpretable solutions to traffic PDEs.

Another potential avenue of future research is to embrace the model-free paradigm

of (Kirchdoerfer and Ortiz, 2016) (see Figure 1.7). According to the authors, all models

are inherently misspecified and impose redundant assumptions about the true nature of the

constitutive law. Therefore, a data-driven (model-free) approach of exploring the fundamental

diagram relationship constrained only by the vehicle conservation equation of (1.1) may be

better suited to learn the true traffic dynamics.

Strict

concavity

(P1)

Bounded

speed

(P2)

Bounded

density

(P3)

Boundary

speed

(P4)

Boundary

flow (P5)

Boundary

kinematic wave

speed (P6)

Greenshield’s

Greenberg’s

Underwood’s

Northwestern’s

Newell’s

Wang’s

Daganzo’s

DelCastillo’s

Smulder’s

DeRomph’s

Table 3.6: Six common properties/assumptions about parametric fundamental diagrams out-

lined in Chapter 1 and their satisfiability by the ten examined FDs in Table 1.1.
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Chapter 4

Future research

In Chapter 1 we identified the following gaps in macroscopic traffic flow literature:

1. There is no formal treatment of the well-posedness and solution to the inverse problem

of a stochastic traffic conservation law or relaxation thereof.

2. A probabilistic framework for robust constitutive model selection has not been introduced

in traffic flow modelling.

3. There is no application of the model-free data-driven paradigm in estimation of consti-

tutive laws of traffic PDEs on either local low-dimensional or global high-dimensional

phase spaces corresponding to road links and networks, respectively.

This report addressed the second gap. We argue that the application of traffic flow PDEs has

been limited to motorways as they fail to capture the dynamics of urban roads and account for

other transportation modes (e.g. rail, underground). Therefore tackling gaps one and three

may have limited applications to single entry/exit motorways and not yield tangible benefits

to urban transportation modellers.

Instead, we resort to ABM simulations of urban traffic and MATSim (Axhausen,

2016) in particular which is arguably a more realistic representation of traffic reality on a

network scale. We aim to use MATSim model extensions developed by the industry partner

(Arup) to model transportation in London/Leeds where supply and demand data are available

for calibration. Simplified versions of these models may also be considered to ensure that

statistical inference is computationally feasible and therefore the choice of model (London or
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Leeds) will be rectified accordingly. We prioritise future research objectives based on the open

research problems relevant to MATSim calibration identified in Chapter 1:

[OBJ1] (High priority): Develop black-box-driven calibration methods to assimilate Eulerian

data in a synthetic/real stochastic MATSim city simulator while robustifying them to model

miss-specification.

[OBJ2] (High priority): Develop existing calibration framework to assimilate sparse multi-

resolution Eulerian and Lagrangian data in a synthetic/real stochastic MATSim city simula-

tor.

[OBJ3] (Medium priority): Develop existing calibration framework to deal with parameter

unidentifiability and induced simulator likelihood multi-modality in the context of a syn-

thetic/real stochastic MATSim city simulator.

[OBJ4] (Medium priority): Improve existing calibration framework to account for simulator

heterogeneity in input space in the context of a synthetic/real stochastic MATSim city simu-

lator.

[OBJ5] (Low priority): Improve existing calibration framework to account for discontinuities

and local phase transitions in the context of a synthetic/real stochastic MATSim city simulator.

A Gantt chart of realistic time estimates is depicted in Figure 4.1 addressing the

objectives below depending on their priority. We note that objectives scored as high priority

will be pursued in the two coming years while medium priority objectives will be revised in

the beginning of third year subject to COVID-19 funding extension availability. Low priority

objectives will only be undertaken if all other objectives are met ahead of schedule.
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Appendix A

Nomenclature

In this report, we adopt standard notation and denote multidimensional objects in bold letters,

say x. Lowercase letters are used to denote scalars or vectors (x or x, respectively) while capital

letters denote matrices or random variables (the difference between the two is made clear in

the context in which the mathematical objects are provided). The i-th element of a vector x is

written as xi while the (i, j)-th element of a matrix is indexed as Xij. Additional explanations

on abbreviations and notation is provided below.

In this report, we adopt standard notation and denote multidimensional objects in

bold letters, say x. Lowercase letters are used to denote scalars or vectors (x or x, respectively)

while capital letters denote matrices or random variables (the difference between the two is

made clear in the context in which the mathematical objects are provided). The i-th element of

a vector x is written as xi while the (i, j)-th element of a matrix is indexed as Xij. Additional

explanations on abbreviations and notation is provided below.

Table A.1: Acronyms and their corresponding descriptions.

Acronym Description

ABM Agent-based model

EnDTs Ensemble of decision trees

GRW Gaussian Random Walk

i.i.d. Independent and identically distributed

KDE Kernel density estimation

KF Kalman filter
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KL Kullback Leibler

LSTM-NN Long Short-term memory neural network

MAP Maximum a posteriori

MCMC Markov Chain Monte Carlo

ML Marginal likelihood

MLE Maximum likelihood estimate

MRW Mixed Random Walk

ODE Ordinary differential equation

PCE Polynomial chaos expansions

PDE Partial differential equation

pdf Probability density function

PF Particle filter

RE Ratio estimation

RMSE Root mean square error

SEIRD Susceptible Exposed Infected Recovered Deceased

SKM Stochastic kinetic model

SL Synthetic likelihood

SMC Sequential Monte Carlo

TI Thermodynamic integration or integral

TRW Truncated Random Walk

VI Variation inference

w.p. with probability

Table A.2: Commonly used notation and its corresponding description.

Symbol Description

σ Standard deviation

θi Parameter vector of fundamental diagram i

J Jacobian matrix
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E[·] Expectation

p(·) Probability density function

det Determinant

dim(·) Dimensionality

RM M -dimensional plane of real numbers

RM
>0 positive M -dimensional plane of real numbers

∼ Distributed as

∀ For all

∃ There exists

|| ‘Given’. Used to denote conditionality

∞ Infinity∫
Integral

∂ Partial derivative

d Ordinary derivative

log Natural logarithm

lim Limit
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Name True parameters

Greenshield’s uf = 2.0, kjam = 45.0

Greenberg’s uf = 2.2, kjam = 45.0

Underwood’s uf = 5.1, k0 = 8.0

Northwestern’s uf = 2.1, k0 = 11.7

Newell’s uf = 1.3, kjam = 45.0, λ = 40.3

Wang’s uf = 1.1, kcrit = 22.6, s = 4.0

Daganzo’s qcrit = 12.0, kcrit = 20.0, kjam = 45.0

DelCastillo’s Z = 26.0, uf = 2.8, kjam = 45.0, ω = 2.8

Smulder’s uf = 1.5, kcrit = 15.0, kjam = 45.0, γ = 16.0

DeRomph’s uf = 2.5, kcrit = 20.0, kjam = 45.0, γ = 367.0, α = 24.0, β = 2.0

Table B.1: Fundamental diagram relationships with their respective synthetic data simulation

parameters.
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Appendix C

Prior specification

Informative variance Regular variance Diffuse variance

Greenshields data

uf 0.1 0.2 0.3

kjam 10 25 50

σ2 0.003 0.005 0.01

Greenbergs data

uf 0.05 0.1 0.2

kjam 10 25 50

σ2 0.001 0.002 0.003

Underwoods data

uf 0.2 1 2

kc 5 10 20

σ2 0.001 0.003 0.005

Northwesterns data

uf 0.1 0.25 0.5

kcrit 10 20 40

σ2 0.001 0.003 0.005

Newells data

uf 0.1 0.3 0.5

λ 5 10 20

Table C.1 – continued in next page
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Table C.1 – continued from previous page

kjam 10 20 50

σ2 0.001 0.002 0.003

Daganzos data

qc 10 20 30

kcrit 0.2 0.5 1

kjam 100 200 300

σ2 0.003 0.005 0.01

Wangs data

uf 0.1 0.3 0.5

kcrit 1 3 5

s 5 10 20

σ2 0.001 0.002 0.003

DelCastillos data

Z 2 5 10

u 0.2 0.5 1

kjam 10 20 50

ω 0.1 0.2 0.5

σ2 0.001 0.002 0.003

Smulders data

uf 0.1 0.25 0.4

kcrit 2 5 10

kjam 50 100 200

γ 5 10 20

σ2 0.003 0.005 0.01

DeRomphs data

uf 25000 50000 100000

kcrit 1 2.5 5

Table C.1 – continued in next page
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Table C.1 – continued from previous page

kjam 10 25 50

γ 1 2 3

α 100 500 1000

β 0.03 0.05 0.1

σ2 0.01 0.02 0.03

DeRomphs continuous data

kcrit 1 3 5

kjam 3 5 10

γ 0.3 0.6 1

β 0.02 0.03 0.05

σ2 0.001 0.002 0.003

Table C.1: Informative, “regular” and diffuse prior variance specification for all ten fundamen-

tal diagrams fitted on M25 data.

Informative variance Regular variance Diffuse variance

Greenshields data

uf 0.1 0.25 0.5

kcrit 1 2 4

s 0.5 1 2

σ2 0.001 0.002 0.003

Greenbergs data

uf 1 2 3

kcrit 0.05 0.1 0.2

s 1 2 3

σ2 0.001 0.002 0.003

Underwoods data

uf 0.1 1 2

Table C.2 – continued in next page
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Table C.2 – continued from previous page

kcrit 0.001 0.002 0.003

s 0.1 0.5 2

σ2 0.001 0.002 0.003

Northwesterns data

uf 0.1 0.2 0.4

kcrit 0.5 1 2

s 0.1 0.5 1

σ2 0.001 0.002 0.003

Newells data

uf 0.005 0.1 0.2

kcrit 0.4 1 4

s 0.2 1 2

σ2 0.001 0.002 0.003

Daganzos data

uf 0.01 0.1 0.2

kcrit 0.1 1 3

s 0.01 0.5 1.5

σ2 0.001 0.002 0.003

Wangs data

uf 0.01 0.1 0.3

kcrit 0.1 1 3

s 0.05 0.1 1

σ2 0.001 0.002 0.003

DelCastillos data

uf 0.01 0.1 0.2

kcrit 0.1 1 2

s 0.01 0.5 1

Table C.2 – continued in next page
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Table C.2 – continued from previous page

σ2 0.001 0.002 0.003

Smulders data

uf 0.1 0.2 0.4

kcrit 0.2 1 2

s 0.2 1 2

σ2 0.001 0.002 0.003

DeRomphs data

uf 0.1 0.3 0.5

kcrit 1 3 5

s 5 10 20

σ2 0.001 0.002 0.003

Table C.2: Informative, “regular” and diffuse prior variance specification for Wangs funda-

mental diagram applied on synthetic data.

Informative variance Regular variance Diffuse variance

Greenshields data

Z 1 2 4

u 0.05 0.1 0.2

kjam 0.1 1 3

ω 0.01 0.1 0.2

σ2 0.001 0.002 0.003

Greenbergs data

Z 1 3 6

u 0.005 0.1 0.3

kjam 0.1 1 4

ω 0.001 0.05 0.13

Table C.3 – continued in next page
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σ2 0.001 0.002 0.003

Underwoods data

Z 0.1 1.5 3

u 0.1 1 2.5

kjam 0.1 2 4

ω 0.1 0.5 1

σ2 0.005 0.0075 0.01

Northwesterns data

Z 0.1 1 3

u 0.1 0.5 1.5

kjam 0.1 2 4

ω 0.05 0.5 1.5

σ2 0.01 0.025 0.04

Newells data

Z 0.1 1 3

u 0.05 0.1 0.3

kjam 0.1 2 4

ω 0.05 0.1 0.3

σ2 0.001 0.002 0.003

Daganzos data

Z 0.1 1 4

u 0.005 0.1 0.3

kjam 0.1 1 4

ω 0.1 1 4

σ2 0.001 0.002 0.003

Wangs data

Z 0.1 1 4.5

Table C.3 – continued in next page
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u 0.1 0.25 0.5

kjam 0.1 2 6

ω 0.1 2 6

σ2 0.01 0.015 0.025

DelCastillos data

Z 2 3 4

u 0.2 0.3 0.4

kjam 1 3 5

ω 0.2 0.25 0.3

σ2 0.001 0.002 0.003

Smulders data

Z 0.1 1 4

u 0.1 0.5 1

kjam 0.1 2 6

ω 0.1 0.5 1

σ2 0.001 0.002 0.003

DeRomphs data

Z 0.1 1 2

u 0.1 1 2

kjam 0.1 1 2

ω 0.05 0.5 1.5

σ2 0.01 0.05 0.1

Table C.3: Informative, “regular” and diffuse prior variance specification for DelCastillos fun-

damental diagram applied on synthetic data.
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Informative variance Regular variance Diffuse variance

Greenshields data

uf 0.1 0.2 0.4

kcrit 1 4 7

kjam 1 3 5

γ 1 4 7

σ2 0.001 0.002 0.003

Greenbergs data

uf 0.1 1 2.5

kcrit 0.1 0.2 0.4

kjam 1 4 9

γ 1 3 5

σ2 0.001 0.002 0.003

Underwoods data

uf 0.1 0.5 1

kcrit 0.1 0.2 0.4

kjam 1 4 9

γ 1 3 5

σ2 0.001 0.002 0.003

Northwesterns data

uf 0.1 0.2 0.4

kcrit 1 2 3

kjam 1 3 5

γ 1 1.5 2

σ2 0.001 0.002 0.003

Newells data

uf 0.1 0.2 0.4

Table C.4 – continued in next page
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kcrit 1 2 4

kjam 1 3 5

γ 1 2 4

σ2 0.001 0.002 0.003

Daganzos data

uf 0.01 0.05 0.15

kcrit 1 2 4

kjam 1 3 5

γ 1 2 4

σ2 0.001 0.002 0.003

Wangs data

uf 0.1 0.15 0.2

kcrit 1 2 4

kjam 1 3 5

γ 1 1.5 2

σ2 0.001 0.002 0.003

DelCastillos data

uf 0.1 0.2 0.4

kcrit 1 2 3

kjam 1 3 5

γ 1 2 4

σ2 0.001 0.002 0.003

Smulders data

uf 0.1 0.25 0.5

kcrit 1 2 3

kjam 1 3 5

γ 1 2 3

Table C.4 – continued in next page
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σ2 0.001 0.002 0.003

DeRomphs data

uf 0.1 0.2 0.4

kcrit 1 2 3

kjam 1 3 5

γ 0.1 0.5 1

σ2 0.001 0.002 0.003

Table C.4: Informative, “regular” and diffuse prior variance specification for Smulders funda-

mental diagram applied on synthetic data.

Informative variance Regular variance Diffuse variance

Greenshields data

uf 0.1 0.3 0.5

kcrit 1 2 3

kjam 1 3 4

γ 0.05 0.1 0.2

α 0.5 1 2

β 0.005 0.01 0.02

σ2 0.00025 0.0005 0.001

Greenbergs data

uf 0.1 0.3 0.5

kcrit 0.1 0.3 0.5

kjam 0.2 0.5 1

γ 0.1 0.2 0.3

α 0.1 0.2 0.3

β 0.005 0.01 0.02

Table C.5 – continued in next page
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σ2 0.00025 0.0005 0.001

Underwoods data

uf 0.1 0.5 1

kcrit 0.1 0.5 1

kjam 1 2 3

γ 1 2 4

α 1 2 3

β 0.02 0.05 0.1

σ2 0.001 0.002 0.003

Northwesterns data

uf 0.1 0.2 0.3

kcrit 0.5 1 1.5

kjam 0.5 1 1.5

γ 1 3 6

α 0.1 0.25 0.5

β 0.01 0.05 0.1

σ2 0.00025 0.0005 0.001

Newells data

uf 0.1 0.3 0.5

kcrit 1 2 5

kjam 1 2 5

γ 3 5 10

α 5 10 15

β 0.05 0.1 0.2

σ2 0.001 0.002 0.003

Daganzos data

uf 0.02 0.05 0.1

Table C.5 – continued in next page
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kcrit 0.2 0.5 1

kjam 0.5 1 2

γ 0.2 0.5 1

α 1 5 10

β 0.02 0.05 0.1

σ2 0.001 0.002 0.003

Wangs data

uf 0.1 0.2 0.3

kcrit 1 2 3

kjam 1 3 5

γ 1 3 5

α 0.5 1 2

β 0.1 0.25 0.5

σ2 0.001 0.002 0.003

DelCastillos data

uf 0.1 0.2 0.3

kcrit 1 2 3

kjam 1 2 4

γ 1 3 6

α 1 2 3

β 0.1 0.2 0.3

σ2 0.001 0.002 0.003

Smulders data

uf 0.1 0.3 0.4

kcrit 1 2 3

kjam 0.5 1 2

γ 0.1 0.25 0.5

Table C.5 – continued in next page
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α 0.5 1 2

β 0.01 0.025 0.05

σ2 0.001 0.002 0.003

DeRomphs data

uf 0.05 0.1 0.2

kcrit 0.1 0.5 1

kjam 0.5 1 2

γ 1 2 4

α 0.1 0.5 1

β 0.02 0.05 0.1

σ2 0.001 0.002 0.003

Table C.5: Informative, “regular” and diffuse prior variance specification for DeRomphs fun-

damental diagram applied on synthetic data.
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