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Abstract

This thesis details an approach known as change-point detection (CPD) that aims to detect

changes in the mean, variance and covariance of a time series. The scope of CPD is limited to

an on-line (real-time) Bayesian spatio-temporal setting. In this setting, the goal of CPD is to

provide step-ahead predictions and partition the time series into disjoint segments every time a

new datum is received using Bayesian inference. This is achieved by modelling each datum as a

sample from a data-generating process which we are imitating using a probability distribution

as a model. At each time step the most likely model is chosen among a universe of potential

models. This leads to the development of the Bayesian on-line change-point detection and model

selection (BOCDMS) algorithm which has a linear computational and storage complexity in

the number of observations.

Model selection is narrowed by employing two conjugate point process models: the Poisson

Gamma (PG) and Multinomial Dirichlet (MD) models. We study the properties of these models

and assess their sensitivity and performance on four synthetic and three real-world datasets,

the latter of which are related to crime in Chicago, property transactions in the UK and

cryptocurrency transactions.

Keywords: Change-point detection, point processes, Bayesian inference, spatio-

temporal statistics, machine learning
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ably as the models we employ are probabilistic. Also, a data stream is used to denote input
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Chapter 1

Introduction

Objectives:

X Introducing and formulating change-point detection problems.

X Motivating the need for change-point detection algorithm.

X Conducting a comprehensive literature review of the change-point detection techniques

used in a variety of settings.

X Limiting the scope of this thesis and outlining its contributions.

The study of sequences of data ordered in time, otherwise known as time series (TS), dates

back to the work of G. U Yule in the 1920s (Yule, 1927). A natural way of improving the un-

derstanding of such sequences is to partition or segment them into smaller sub-sequences while

maintaining their natural (time) ordering. The boundaries between successive partitions are

known as structural breaks or change-points (CPs) and capture important pieces of information,

such a natural interpretation in the context of a particular application.

The task of splitting a time series into time-ordered blocks is sometimes known as segmen-

tation. Time series segmentation can be a fruitful activity as it can reveal the hidden properties

of the source of the series. However, it often the case that these properties are discovered only

in some regions of the TS. Another complication arises from the fact that the same properties
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do not appear periodically in different regions of the TS. Therefore, it is unrealistic to assume

that the dynamics that govern a time series (and therefore its properties) do not change over

time due to the stochastic or non-deterministic nature of these series. To avoid committing

to naive assumptions about the behaviour of a time series as a whole, it is useful to identify

segments where certain regimes govern the data. Hence, simplifying assumptions can be made

locally without overestimating the applicability of these assumptions. A key assumption that is

vital for modelling and inference is stationarity1. By modelling a time series as a piecewise sta-

tionary process, change-point detection (CPD) becomes more accurate in modelling real-world

TS.

The changes that prevent us from accepting such assumptions are attributed to external

factors and/or internal systematic changes of a system’s dynamics (Aminikhanghahi and Cook,

2017). The latter cause of change-points is more interesting as internal changes are not often

visible to the human eye and are therefore more difficult to detect. By taking these changes

into account a change-point detection system aims to identify whether a change has occurred

and to pinpoint its exact location in time. For the reasons outlined above, CPD constitutes a

necessary tool for time series modelling as it boosts predictive performance significantly.

1.1 Problem statement

A formal introduction to the change-point problem tackled in this dissertation is provided

below. Consider the following formulation of a one-dimensional change-point problem.

Let y1:t := (y1, y2, . . . , yt) be a finite data stream ∀yi ∈ R, i, t ∈ N. The sequence y1:t

is commonly referred to as a time series. Suppose that ∃ S(1), S(2), . . . , S(l) disjoint subsets

of y1:t known as segments, where the number of CPs l ∈ N is unknown. Assume that the

elements in each one of S(1), S(2), . . . , S(l) are arranged in increasing order of time. Define a

change-point Ci to be the index of the last element of subset S(i), ∀i ∈ {1, . . . , l}. The goal is

to develop a CPD that determines each set S(i) and therefore the values of each Ci subject to

the segmentation S(1), S(2), . . . , S(l) being optimal according to some optimality metric. This

optimality constraint is abstractly defined here because it varies across different approaches

1Stationarity is rigorously defined in Chapter 2.
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Figure 1.1: Change-points in mean (left), variance (middle) and covariance (right)
of time series generated by samples from a Gaussian distribution.

adopted to solve the problem. A precise definition of this metric is provided in later chapters.

Apart from the optimality constraint mentioned above, one might define a “feasibility

constraint” about each Ci. Specifically, each Ci corresponds to a point in time characterised

by an abrupt change in a parameter and/or property of the time series (Aminikhanghahi and

Cook, 2017; Page, 1954). At every change-point Ci at least one of the following properties of a

collection time series must change:

• Mean.

• Variance.

• Covariance between any two time series.

Figure 1.1 illustrates changes in each of these properties on three separate plots. In real-

world applications it is possible that a combination of properties of a time series changes. For

instance, it is possible that both the mean and variance of a time series changes at the same

time. It is therefore an essential property of a CPD to be able to detect multiple change-points

at any instance of time.
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1.2 Applications

Figure 1.2: Change point detection in
heart rate monitoring with different
sensitivity control σ and different win-
dow size N (Staudacher et al., 2005).

To illustrate the usefulness of change-point de-

tection we list two common applications of CPD in

medicine and climate change (Aminikhanghahi and

Cook, 2017).

In medical applications CPD appears useful in au-

tonomous patient monitoring. By identifying changes

in physiological variables such as heart rate and elec-

trocardiogram, patients can be supervised in real-time

(Staudacher et al., 2005). The understanding of brain

activity as well as the study of sleeping patterns,

epilepsy and other conditions can be aided by the use

of CPD systems. An example of CPD in real-time heart rate monitoring is shown in Figure

1.2.

Another field in which CPD gained popularity is climate change. CPD techniques fo-

cus on observing possible changes in the climate by examining increases in greenhouse gases

(Aminikhanghahi and Cook, 2017) changes in the concentration of CO2 levels. In a case study

about the atmospheric carbon dioxide concentrations at Mauna Loa (Beaulieu et al., 2012),

CPD techniques identified a shift of model parameters in 1991, the same year an in Mount

Pinatubo occurred.

The above two showcase examples demonstrate the immense benefits CPD can have on

a variety of unrelated scientific fields. A more detailed presentation of real-world applications

can be found in Chapter 5, where the current CPD system is applied to crime, real estate and

finance.
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1.3 Literature

Due to the pertinence and applicability of change-point detection in various fields, change-

point problems have been considered in a variety of settings. One area of research (Xuan,

2007; Xuan and Murphy, 2007) has been devoted to the off-line or retrospective or batch-mode

version of the problem, where the whole dataset is available for processing. There are also

on-line approaches (Fearnhead and Liu, 2007; Adams and MacKay, 2007) that process data in

batches of size one, i.e. sequentially. In such approaches every time a new datum is received

the algorithm performs updates based on previously stored information.

The first attempt to conceptualise and tackle change-point problems was made by (Page,

1954) using a frequentist framework. In his paper Page motivated the need to detect change-

points in time series and proposed an on-line framework that identifies changes in a parameter

θ of a time series. In particular, Page suggested the use of moving averages to model the time

series’ mean and then employed hypothesis testing to examine whether a CP has occurred or

not. He also utilised control charts and the cumulative sum (CUMSUM) statistic to identify

change-points along with many authors that adapted his approach (Jr. and Samuel, 2001; JR,

2007; Khoo, 2004; Taylor, 2000). Other frequentist techniques that emerged in the early years

of CPD focused on estimating the abundance of CPs in a time series. These include the works

of (Yao, 1988) and (Lee, 1995) who proposed the use of a penalised least-squares estimator for

the number of CPs in a time series.

Once probabilistic approaches become more established in change-point problems, research

was driven towards Maximum Likelihood Estimation (MLE) (Samuel et al., 1998; Fahmy and

Elsayed, 2006) of CPs and Likelihood Ratio (LR) tests (Pignatiello and Simpson, 2002; Mah-

moud et al., 2006) applied on CUMSUM statistics. Another promising approach that reduced

CPD to time series outlier detection was the Change Finder method (Yamanishi and Takeuchi,

2002), which modelled the time series as an Autoregressive (AR) process. An adaptation to

the Change Finder method was developed by (Liu et al., 2013) and (Kawahara and Sugiyama,

2011) and was inspired by LR tests. Their work proposed a non-parametric technique of com-

puting the ratio of densities, which is a measure of dissimilarity between successive segments

of a time series. A high dissimilarity measure implied that the existence of a CP between the

5



two segments was likely.

On the Bayesian front, a first approach based on Page’s work was introduced by (Smith,

1975). Smith applied Bayesian inference on the location of CPs and exemplified his framework

using the cases of Binomial and Gaussian distributions. Despite the fact that this framework

was suitable for retrospective segmentation, he also informally illustrated a way of extending

his Bayesian analysis to sequential data. Another Bayesian off-line framework was developed by

Xuan and Murphy in 2007 (Xuan and Murphy, 2007) which introduced inference on dependent

multi-dimensional time series.

It wasn’t until the works of (Fearnhead and Liu, 2007) and (Adams and MacKay, 2007) in

2007 that CPD was more rigorously defined in an on-line setting. The latter authors improved

upon the ideas of the former, which involved deriving recursions that can be implemented

efficiently using a dynamic programming paradigm. Another notable mention is the work of

(Barry and Hartigan, 1992) on Product Partition Models (PPMs) that constituted the building

blocks of many pioneering improvements in CPD including Adams and MacKay’s and Xuan

and Murphy’s work. The work of on-line change-point detection culminates in Knoblauch and

Damoulas’ paper on Bayesian CPD in a spatio-temporal setting (Knoblauch and Damoulas,

2017). Notable competitive methods include the one by (Saatçi et al., 2010) which employs

Gaussian Processes to create a non-parametric time series model for CPD.

For completeness, it is worth mentioning that kernel (Harchaoui et al., 2009), graph-based

(Chen and Zhang, 2012), and clustering methods (Keogh et al., 2001) were also employed in a

CPD context, but received comparatively less attention.

Regarding point processes (PP) the use of which is discussed in Chapter 3, relevant work

was done by (Byrd et al., 2017). They proposed an l-lag exact on-line CPD algorithm that

utilises point process models. The actual PP models were derived in a 1985 paper by (Nelson,

1985b), who extended univariate models to a multivariate framework.
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1.4 Scope

The current CPD system tackles change-point problems in a broader framework than the

one described in the problem definition. Specifically, CPD is applied on multi-dimensional

data instead of uni-dimensional. In terms of notation, this translates to defining each yi as a

k-dimensional vector yi and y1:t as a (t× k) matrix Y1:t. Multi-dimensional data can be either

dependent or independent collections of time series. In addition to the ordering of data in time,

there is also a spatial arrangement of data in an effort to encode dependencies between different

data-generating processes. This type of data is known as spatio-temporal.

Furthermore, the CPD algorithm is executed sequentially on data (on-line). As a result,

there is an attempt to make effective use of models and data structures to upper bound the

computational and storage complexities. Another implicit consequence of operating in an on-

line setting is that the range of possible models is limited2. Also, Bayesian approaches are highly

compatible with on-line CPD frameworks. For that reason, Bayesian inference techniques

are employed to provide a solution to this class of change-point problems. In a Bayesian

context, CPs are inferred or estimated based on updated beliefs about the location of the CPs

and the models describing the data-generating process. Hence, in exact terms the algorithm

developed performs change-point estimation (CPE) instead of CPD. Finally, there is an attempt

to consider a set of potential models for modelling the data instead of only one model. This

gives rise to the need for selecting the most appropriate model at any time instance. The

proposed algorithm exploits the properties of the Bayesian framework to incorporate model

selection in the algorithm, as inspired by (Fearnhead and Liu, 2007).

Given the scope specified above, the algorithm developed performs a Bayesian On-line

Change-point Detection and Model Selection, abbreviated as BOCDMS.

1.4.1 Contributions

The work by Knoblauch and Damoulas has so far been restricted to continuous data. This

dissertation implements the following extensions, details of which are provided in later chapters:

2We discuss this thoroughly in Chapter 2.
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• Extending the current framework to point processes.

• Implementing two models for count and categorical data on both a univariate and multi-

variate setting.

• Assessing model sensitivity and stability in a formal analysis.

• Testing each model on three real-world datasets.

1.5 Synopsis

The second chapter of the dissertation outlines the building blocks of the CPD algorithm

with reference to the assumptions and concepts that led to its development. It proceeds by

defining important quantities of the algorithm and deriving key equations. Then, the pseudo-

code of the algorithm is provided and its computational complexity is analysed. In chapter 3,

the two models for point processes are defined and are tested on synthetic datasets. Following

each model description, there is a discussion of the model’s sensitivity to prior specification and

an evaluation of the model’s performance in pathological cases. The Chapter ends by drawing

comparisons between the two models and listing a models-specific version of the BOCDMS

algorithm. Chapter 4 is devoted to applying each model to three real-world datasets and

evaluating its performance. Finally, Chapter 5 summarises the conclusions of the dissertation

and proposes future extensions to the current algorithm. This chapter also attempts to evaluate

the project and consider legal, ethical and professional issues that emerged.
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Chapter 2

Change-point detection framework

Objectives:

X Introducing basic concepts in TSA.

X Delineating the building blocks of the current CPD framework.

X Describing and deriving important quantities in CPD.

X Citing the CPD algorithm and analysing its computational and space complexities.

2.1 Preliminaries

1 2 3

4 5 6

7 8 9

s2

s1

Figure 2.1: Graphical illus-
tration of a collection nine
TS models with spatial di-
mensions s1 = 3, s2 = 3.

We start this chapter by defining some fundamental concepts

in time series analysis.

Let y1:t := (y1, . . . , yt) be a one-dimensional time series

∀yi ∈ R, 1 ≤ i ≤ t < ∞. Then, let yt be a (s × 1) vector

denoting a collection of one-dimensional time series at time t for

some s ∈ N, or in other words a s-dimensional (multivariate)

TS. In a spatio-temporal series each one of the s := s1 × s2 TS

can assume a spatial representation, such as the s1 × s2 fully-

connected spatial grid shown in Figure 2.1. The notation is then

adjusted to account for the spatial structure by denoting the s-dimensional TS vector as a
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(s1 × s2) matrix Yt, where Yij is the one-dimensional TS located in the (i, j)-th position of the

grid at time t for i ∈ {1, . . . , s1}, j ∈ {1, . . . , s2}. Note that there is a direct mapping of the

associations between TS to the spatial grid in Figure 2.1. In that mapping, edges appearing

in the grid represent an association between two vertex TS. According to the structure of the

graph in Figure 2.1, each TS is only correlated with TS that are in its close vicinity. This

graphical structure can be exploited when studying real-world applications of spatio-temporal

time series.

A time series is said to be stationary if it is strictly and/or weakly stationary.

A time series is weakly stationary (Hamilton, 1994) if its mean and auto-covariance are

independent of time t:

E(yt) = µ ∀t ∈ N

Cov(yt, yt+j) = γj ∀t, j ∈ N.

A time series is strictly stationary (Hamilton, 1994) if the joint distribution of (yi+1, . . . , yi+t)

depends only on i ∀t ∈ N:

(y1, . . . , yt)
d
= (yi+1, . . . , yi+t) ∀i ∈ N.

Stationarity can be extended to spatio-temporal series: A spatio-temporal series is station-

ary if and only if all its component time series are stationary. The importance of a stationary

process lies on the fact that its future can be modelled in the same way as its past, which

simplifies prediction significantly.

Furthermore, it is important to define some additional tools in probability that are going

to be useful for the rest of this chapter: law of total probability, Bayes’ theorem, independence

and conjugacy. The law of total probability (LTP) states that for {Bn : n ∈ N} a finite or

countably infinite partition of a sample space Ω and an event A ⊆ Ω, it follows that

P(A) =
n∑
j=1

P(A ∩Bj).
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LTP decomposes the probability of an event into a sum of mutually exclusive conjunctions of

events, which is a convenient property exploited throughout the derivations of this chapter.

Additionally, Bayes’ theorem states that for any two events A and B with P(B) > 0,

P(A|B) =
P(A ∩B)

P(B)
=

P(B|A)P(A)

P(B)
∝ P(B|A)P(A).

Based on this theorem we can define the notion of independence between two events A and B.

Two events A and B with A,B ⊆ Ω are independent if and only if P(A ∩ B) = P(A)P(B) or

equivalently, P(A|B) = P(A) or P(B|A) = P(B). Also, a corollary to the law of total probability

that uses Bayes’ theorem is the following:

P(A|C) =
∑
j=1

P(A|C ∩Bj)P(Bj|C) (2.1)

Bayes’ theorem can also be extended to model random variables (RVs) instead of events.

For two random variables X and Y , we can interpret the theorem in the following way. Let

f ,g,h be well-defined distributions. Suppose that g(X) expresses a prior belief over the pos-

sible values of X and that h(Y |X) denotes the likelihood of Y under regime X. Then,

f(X|Y ) ∝ h(Y |X)g(X) is the posterior belief about X in the light of new information Y .

Alternatively, posterior belief ∝ likelihood × prior belief. This formulation of Bayes’ theorem

is rather intuitive and reflects a thought process many humans follow when presented with new

information about the world.

If the prior distribution g and posterior distribution f belong to the same family of dis-

tributions, then g and f are said to be conjugate distributions. We say that g is a conjugate

prior to the likelihood function h. Also, conjugate models are said to be closed under sampling

or in closed form because when integrated over their posterior distribution has an analytic ex-

pression. Conjugacy has many consequences in the CPD developed, all of which are discussed

in relevant sections of this chapter.
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2.2 Main assumptions

The arguments posed in the remaining of this chapter apply for a generalised form of a

time series and can be trivially extended to a spatio-temporal series.

The construction of a CPD framework is based upon two fundamental assumptions about

the properties of TS segmentation. These assumptions give rise to a Bayesian on-line CPD

framework of spatio-temporal series, as specified in the Scope of this dissertation in Chapter

1. One instrumental assumption that encompasses the approach adopted in this dissertation

is that there is an underlying data-generating process (DGP) generating the TS data. In other

words, data points are assumed to be samples from a probability distribution that governs the

behaviour of the DGP. In Machine Learning terminology this is known as a generative approach

of modelling data. According to the generative model, the “hidden” distribution of the DGP is

known but the parameters of the model are unknown. Formally, we say that each datum yt at

time t is described by a model mt of some distribution p(yt|θmt) with some set of parameters

θ ∈ Rd, where d is the dimension of the parameter space. Notationally, this is articulated as

yt ∼ p(yt|θmt).

The second fundamental assertion made is that CPs are modelled as a product partition

model (PPM), which was developed by (Barry and Hartigan, 1992) and used in (Adams and

MacKay, 2007) on-line CPD paper. This assertion is predicated on the previously adopted

premise that a generative view of the world reflects reality more accurately. According to the

one-dimensional case of the PPM model, each CP Ci is randomly drawn from a product partition

distribution. Conditionally on known the location of the CPs and therefore the segments of

the TS, data from two different segments S(i) and S(j) are independent ∀i 6= j = 1, . . . , l.

Mathematically, the last condition can be expressed as

P(y1:t|C1, . . . , Cm) =
l∏

i=1

P(S(i)). (2.2)

An implicit consequence of this condition is that any two segments S(i) and S(j) are described

by a different model ∀i 6= j ∈ N. A different model may either imply a different distribution or

the same distribution with different parameters. There is a disparity between this assumption
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and the one made in (Fearnhead and Liu, 2007), which states that the models describing any

two segments and their parameters are both independent. Our set of assumptions is more

similar to the ones in (Adams and MacKay, 2007), where the PPM model is assumed.

The PPM model can also be compared to a Hidden Markov Model (HMM) (Chib, 1998),

that is a model specified by an finite space of hidden states and the transition probabilities

between them. A PPM can be treated as a HMM by modelling the partition variables Ci’s

as hidden states (Xuan and Murphy, 2007). However, the PPM model has an unbounded

number of states, which is why it is more similar to a HMM with infinite number of states.

Also, in a PPM it is impossible to revisit a state whereas in a HMM model this transition

often receives non-zero probability. Therefore, a HMM model is more suitable to applications

where the number of regimes is known and therefore it is useful to model transitions between

known regimes. In contrast, the PPM model is more flexible in that it does not assume that

the number of segments is known a priori.

In addition to the two central assumptions above, we assume that the data of any given

segment Si are independent and identically distributed (iid) draws from the model governing

the segment, ∀i ∈ {1, . . . , l}. Moreover, the time series is assumed to be piecewise stationary,

where each segment’s data corresponds to a stationary sub-series.

2.3 Prior beliefs

The assumptions declared in the previous section are compatible with a Bayesian frame-

work of CPD, as demonstrated in (Adams and MacKay, 2007). The most important of these

assumptions rests on the idea that conditionally on knowing the location of the CPs, the mod-

elling of the time series can be simplified. One such way of modelling the location Ci of a CP

for some i ∈ {1, . . . , l} is to introduce a random variable rt, called the run-length, denoting the

length of the current segment S(i). For instance, rt = j implies that there is a CP at time t− j.

Therefore, the run-length encodes information about the location of CPs and can be used to
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find the boundaries of segments. It is defined recursively as:

rt =

0 If there is a CP at time t

rt−1 + 1 If there is no CP at time t.

(2.3)

The run-length is illustrated using a dummy TS example shown in Figure 2.2. This Figure

depicts the “true” run-length whereas in practise the distribution over the run-length is main-

tained.
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Figure 2.2: Plots of TS data with three

change-points versus time (see top) and

plots or run-length versus time (bottom).

Another quantity of interest that is monitored in

every time instance is the model mt, which is also

modelled as a r.v.. We define mt such that it is the

model describing y(t−rt):t. Since every segment is gov-

erned by only one model, it follows that rt = j im-

plies mt−j = · · · = mt−1 = mt. A model consists of a

conditional probability density dP(Yt|θm) on Rs and a

parameter prior dP(θm) on Θm ⊆ Rd with fixed hyper-

parameters θ0
m that can be optimized depending on the

application. Hyper-parameters are used to calibrate the

model by expressing a prior belief about the model pa-

rameters. Also, one model may not suffice to model the

different types of data satisfactorily and therefore it is

beneficial to define a model universe M, that is a set of

potential models with associated probability. At every

iteration, the most probable model is chosen to model

the DGP.

Furthermore, there is no a priori knowledge about

the relative abundance and location CPs as well as the

models governing each segment. Since we are develop-

ing a Bayesian CPD framework, it is common to remedy this lack of knowledge by assigning

prior beliefs to the random variables encoding that information. This idea was conceived inde-

pendently by (Adams and MacKay, 2007) and (Fearnhead and Liu, 2007). Specifically, let g, h
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be probability mass functions (PMFs) and πmt , fmt be probability density functions ∀mt ∈M

and suppose that

rt ∼ g(rt) ∀ rt ∈ N, (2.4)

mt|rt,mt−1 ∼ q(mt|rt,mt−1) ∀ mt ∈M, (2.5)

θmt|mt ∼ πmt(θmt|mt) ∀ θmt ∈ Θm ⊆ Rd, (2.6)

yt|mt,θmt ∼ fmt(yt|mt,θmt) ∀ yt ∈ Rs. (2.7)

In the above prior specification yt denotes the (s × 1) vector of one-dimensional TS at time

t ∈ N.

Next we define the transition probabilities for rt and mt for |M|= 1 as defined in Adams

and MacKay (2007). Given a Hazard function H : N 7→ [0, 1], and model prior q :M 7→ [0, 1],

the transition probabilities are

P(rt|rt−1) =


1−H(rt−1 + 1) if rt > 0

H(rt−1 + 1) if rt = 0

0 otherwise

(2.8)

P(mt|mt−1, rt) =


1mt−1(mt) if rt > 0

q(mt) if rt = 0

0 otherwise

(2.9)

For a probability density function P (x) and its distribution function F (x) of a random

variable X, the Hazard function H is defined (Evans et al., 2011) as follows:

H(x) =
P (x)

1− F (x)

∀x ∈ supp(X). In the case where P (x) belongs in the exponential family of distributions,

the process is memoryless and the Hazard function is constant for all x ∈ supp(X) (Adams

and MacKay, 2007). We choose P (x) to be a Geometric distribution with constant intensity

λ, where λ is a hyper-parameter. Overall, the Hazard function allows us to express a prior
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belief about the probability of CP occurring at a given time t. By default, we set λ = 30 in

all applications considered as this belief has little effect on posterior beliefs given a sufficiently

large number of observations.

Moreover, for a framework with more than one potential models (|M|> 1) equation 2.10

is modified as follows:

P(mt|mt−1, rt) =


1mt−1(mt)P(mt−1|y1:(t−1), rt) if rt > 0

q(mt) if rt = 0

0 otherwise

(2.10)

The above equations indicate that a change of model occurs only in the presence of a CP, in

which case a model is sampled from the model prior q.

2.4 Useful recursions

The CPD algorithm uses the quantities defined in the previous section to compute pre-

dictions and estimate the most probable segmentation. We proceed by listing supplementary

quantities required to achieve these two tasks and deriving recursive equations for their com-

putation.

At every time step t, the algorithm computes for all models and run-lengths the posterior

predictive density of yt conditional on the model, run-length and previous data:

dP(yt|y1:(t−1),mt, rt) =

∫
Θmt

dP(yt|θmt)︸ ︷︷ ︸
likelihood

dP(θmt|y(t−rt):(t−1))︸ ︷︷ ︸
parameter posterior

dθmt (2.11)

The above equation follows directly by the LTP in 2.1. Under the PPM assumption, we can all

ignore data from previous segments conditional on the run-length in the parameter posterior.

Hence, the interval (t − rt) : (t − 1) corresponds to the current segment before receiving the

new datum yt at time t. Since the parameter space Θmt is continuous we integrate over

the parameters instead of summing over. In Bayesian analysis this is known as marginalising

out parameter uncertainty since the parameter does not appear in the LHS of the equation.
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This is achieved by “summing” over the possible parameter values and computing the product

shown in the RHS. Unless conjugacy is exploited (Xuan and Murphy, 2007), the calculation

of the integral is non-trivial. This dissertation focuses on obtaining exact expressions for 2.11

in a computationally efficient way and therefore utilises conjugate parametric models. If a

conjugate model is used, then the product in 2.11 will have a closed form and the integral can

be computed efficiently. Conjugacy is also exploited in (Adams and MacKay, 2007) but is only

limited to conjugate exponential models. We remove the restriction of the models belonging

in the exponential family of distributions. However, it is worth mentioning that there are

approximations to the integral in 2.11 for non-conjugate models using sequential Monte Carlo

techniques explored in Turcotte and Heard (2015).

Another recursion that can be efficiently computed using conjugate models is the joint

distribution of the data, run-length and model:

dP(y1:t, rt,mt) =
∑
mt−1

∑
rt−1

{ dP(yt|y1:(t−1), rt,mt)︸ ︷︷ ︸
equation 2.11

P(mt|y1:(t−1), rt,mt−1)︸ ︷︷ ︸
Model transition in 2.10

P(rt|rt−1)︸ ︷︷ ︸
equation 2.8

dP(y1:(t−1), rt−1,mt−1)︸ ︷︷ ︸
Recursive term

} (2.12)

The above equation is used to assess whether a CP has occurred or not. In an on-line

Bayesian setting this hypothesis is tested by computing the CP probability (run-length becomes

zero) and its complement (run-length grows by a unit). These are referred to as CP and growth

probabilities respectively and their calculations are shown below:

dP(y1:t, rt = 0,mt) = dP(yt|y1:(t−1), rt,mt)q(mt)

×
∑
mt−1

∑
rt−1

{H(rt−1 + 1)dP(y1:(t−1), rt−1,mt−1)} (2.13)

dP(y1:t, rt = rt−1 + 1,mt) = dP(yt|y1:(t−1), rt,mt)P(mt−1|y1:(t−1), rt)

× (1−H(rt))dP(y1:(t−1), rt−1,mt−1) (2.14)

These expressions follow by substituting the appropriate run-length case from 2.8, 2.10 into

2.12. The rest of the calculations can be performed using the equations presented above. The
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marginal likelihood of the data known as evidence is equal to

dP(y1:t) =
∑
mt

∑
rt

dP(y1:t,mt, rt)︸ ︷︷ ︸
equation 2.12

(2.15)

Based on the evidence, we can compute the following mass functions:

P(rt,mt|y1:t) =

equation 2.12︷ ︸︸ ︷
dP(y1:t, rt,mt)

dP(y1:t)︸ ︷︷ ︸
equation 2.15

(2.16)

P(mt|y1:t) =
∑
rt

P(rt,mt|y1:t)︸ ︷︷ ︸
equation 2.16

(2.17)

P(rt|mt,y1:t) =

equation 2.16︷ ︸︸ ︷
dP(rt,mt|y1:t)

dP(mt|y1:t)︸ ︷︷ ︸
equation 2.17

(2.18)

P(rt|y1:t) =
∑
mt

P(rt,mt|y1:t)︸ ︷︷ ︸
equation 2.16

(2.19)

P(mt−1|y1:(t−1), rt) =

equation 2.16︷ ︸︸ ︷
P(rt−1,mt−1|y1:(t−1))

P(rt−1|y1:(t−1))︸ ︷︷ ︸
equation 2.19

(2.20)

Equations 2.16, 2.18 and 2.20 follow immediately by applying Bayes’ theorem while 2.17 and

2.19 follow by law of total probability. The names of the quantities above order from top to

bottom are the joint model and run-length distribution, the model posterior, the model-specific

run-length posterior, the run-length posterior, and the conditional model posterior used in

equation 2.10. It is important to note that 2.20 was utilised for the calculation in equation

2.10.
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2.5 Prediction and Segmentation

The purpose of computing and storing the quantities above is to implement prediction

and segmentation at the end of each time step t. The task of prediction or forecasting is also

performed in a Bayesian setting for an arbitrary number of steps h ahead of the current time.

For example, a two-step ahead prediction corresponds to forecasting yt+2. We denote the h-step

ahead prediction as Ŷt+h, which is not to be confused with the spatial matrix of the multivariate

time series Yt. We also define an additional quantity to simplify the forecasting expression. Let

ŷht be the predictive interval, that is the vector of predictions for a specified period period of

time t+ 1 to t+ h− 1. Then,

ŷht =

∅ if h = 1

ŷ(t+1):(t+h−1) otherwise

The outcome ŷt+h of the h-step ahead forecast is equal to E(Ŷt+h|y1:t, ŷ
h
t ), the posterior ex-

pectation of the h-step ahead prediction. This expectation is computed with respect to the

posterior predictive distribution of Ŷt+h

P(Ŷt+h|y1:t) =
∑
rt

∑
mt

{ dP(Ŷt+h|y1:t, ŷ
h
t , rt,mt)︸ ︷︷ ︸

equation 2.11

dP(rt,mt|y1:t)}︸ ︷︷ ︸
equation 2.16

(2.21)

We expect prediction that are far ahead in the future to be less accurate than near-future

predictions because the dynamics governing the data-generating process are more likely to

change over a longer period of time. For that reason the most accurate forecast is of a TS is

its posterior expectation.

The task of segmentation also follows the Bayesian paradigm. In the introduction of

the change-point problem in Chapter 1, we claimed that the segmentation must be optimal

in some way. Optimality is judged by considering all possible segmentations and choosing

the most likely conditional on the current data. This is the analogue of maximum likelihood

estimation in a Bayesian setting and is called Maximum A Posteriori (MAP) segmentation.
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MAP segmentation was inspired by (Fearnhead and Liu, 2007) and is defined as follows:

MAPt = max
r,m
{dP(y1:t, rt = r,mt = m)MAPt−r−1}, (2.22)

with MAP0 = 1. The MAP estimators for the run-length and model are

(r∗t ,m
∗
t ) = argmax

r,m
{dP(y1:t, rt = r,mt = m)MAPt−r−1},

with (r∗0,m
∗
0) = (0,m0), where m0 is a randomly chosen model fromM. Let St be the segment

at time t containing the elements of the current segment, which is notationally different than

the definition of S(k) for some k ∈ {1, . . . , l}. Then, the segmentation is defined as St =

St−r∗t−1 ∪ {(t − r∗t ,m
∗
t )} with S0 = ∅, where (t′,mt′) ∈ St denotes a CP at time t′ ≤ t with

mt′ ∈M the model for yt′ : t.

The MAP segmentation algorithm by (Fearnhead and Liu, 2007) is very similar to a

forwards-filtering backwards-sampling algorithm for HMMs (Scott, 2002), where the “hidden

variable” is a time index encoding where the location of the last CP.

2.6 Algorithm

The computations of the quantities described in the previous sections are compiled into

Algorithm 1 shown below.

Every time a new datum yt is received, the algorithm initialises or updates the growth

and CP probabilities for every possible model in O(1), contributing O(|M|) to the overall

complexity of the algorithm. This is because both dP(y1:t, rt = 0,mt = m) and dP(y1:t, rt,mt =

m) are based on equation 2.12. By storing this joint density for every possible run-length allows

its computation to be done recursively and efficiently using a dynamic programming paradigm.

The overhead of this computation is a O(|M|t) space complexity, where t is the time of the

last observation. The joint density in 2.12 also requires by definition the computation of 2.8,

2.10 and 2.11. Quantities 2.8 and 2.10 are both computed in O(1) at each iteration using the

Hazard function and the model prior, respectively. Equation 2.11 can also be computed in O(1)

under the assumption that only conjugate models are employed, as explained before.
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Algorithm 1 Bayesian On-line Change-point Detection with Model Selection (BOCDMS)

1: Input at time 0: model universe M, Hazard H, prior q.
2: Input at time t: next observation yt.
3: Output at time t: prediction ŷ(t+1):(t+hmax), segment St, model posterior P(mt|y1:t).
4: for next observation yt at time t do
5: # Step 1: Calculate model-specific quantities
6: for m ∈M do
7: if t = 1 then
8: Initialise dP(y1:t, rt = 0,mt = m) with prior
9: else

10: Update dP(y1:t, rt,mt = m) using 2.13 and 2.14
11: Prune model-specific run-length distribution
12: end if
13: end for
14: # Step 2: Aggregate over models
15: Obtain joint distribution over M via 2.15-2.20
16: Perform prediction and segmentation using 2.21, 2.22
17: Update model parameters θmt for all models mt ∈M
18: Output: ŷ(t+1):(t+hmax), St, P(mt|y1:t).
19: end for

Furthermore, the computation of the mass functions 2.15-2.20 can be achieved by summing

over all possible run-lengths and models giving a complexity of O(|M|t). On the other hand,

2.16-2.20 can be achieved in O(1) by calculating these quantities in the order they are listed.

This is because each one of 2.16 - 2.20 is a multiplicative factor of the quantities listed above

it or of quantities stored in the previous step of the algorithm, such as the joint distribution

of the model, run-length and data in 2.12. This type of calculation entails minimal storage

overheads and is therefore computationally efficient.

Moreover, prediction can also be achieved in O(1) as it requires the calculation of the pos-

terior predictive in 2.11 and the joint model and run-length distribution in 2.16. The former

quantity requires O(1) time due to use of conjugacy while the latter is available from the pre-

vious step of the algorithm. However, segmentation is based on a more burdensome calculation

shown in 2.22. Maximising over the run-length rt and model mt takes O(max(|M|, t)) = O(t)

for large t. Finally, model parameter updates can be performed in O(1) using conjugate mod-

els. Therefore, in the worst-case scenario, each iteration of the algorithm would take O(|M|t)

resulting in an overall time and space complexities of O(|M|t2) and O(|M|t).
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2.6.1 Extensions

To avoid the heavy computational burden induced by the segmentation computation, it

was proposed that the run-length distribution is trimmed. This would result in maximising

over the pruned run-length instead of all possible run-lengths, which are in the order of t. The

effect of pruning the run-length distribution would be a constant in time calculation of the

MAP estimate instead of O(t). Reductions in complexity can also be found in equations such

as 2.15 and 2.21, where we sum over all possible run-lengths.

An intuitive proposal is to discard all run-lengths whose probability is less than some

threshold 1/Rmax for some Rmax ∈ R or to keep only the Rmax most probable run-lengths, as

suggested in (Adams and MacKay, 2007). The latter suggestion guarantees an upper bound

of Rmax on the number of run-lengths, where O(Rmax) is constant in time. Another proposal

that was utilised in (Fearnhead and Liu, 2007) is called Stratified Rejection Control, which had

comparatively similar performance to the two previous approaches. The BOCDMS algorithm

prunes on the model-specific run-length distribution dP(rt|mt,yt) instead of dP(rt|yt) in an

attempt to encode knowledge about the models in the pruning process.

As a result of this pruning, the MAP estimate’s computational complexity was reduced

to O(|M|Rmax) and therefore the running-time complexity of each iteration of Algorithm 1 is

O(|M|Rmax). For small model universes this complexity yields very fast solutions to online

CPD problems. Overall, the time complexity is linear with time O(|M|Rmaxt) with a storage

cost of O(|M|Rmax). In comparison, on-line approaches involving Gaussian Processes (GP),

such as the one by (Saatçi et al., 2010), have a complexity of O(R3
maxt). The on-line approaches

by (Adams and MacKay, 2007) and (Fearnhead and Liu, 2007) have a performance linear in

the number of time or number of observations. Therefore, the current BOCDMS algorithm has

a faster performance compared to competitive on-line CPD algorithms.
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Chapter 3

Spatio-temporal point processes

Objectives:

X Introducing basic concepts in point processes.

X Outlining the Poisson Gamma and Multinomial-Dirichlet models.

X Conducting Bayesian analysis for each of the two models.

X Performing a sensitivity analysis of each model.

X Addressing the limitations of each model.

Although CPD is frequently applied on continuous data, as in (Adams and MacKay, 2007)

and (Fearnhead and Liu, 2007), there is a number of applications in areas such as ecology,

seismology and material science (Møller and Waagepetersen, 2007) that use event-based data.

This chapter explores two models that are applied on event-based data using point processes

(PP).

3.1 Preliminaries

We devote this introductory section to providing details about important concepts in point

processes.
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Contrary to continuous data, a point process is a model used to study the occurrence of

events in time (Weil, 2007). To avoid introducing measure theoretic results in this dissertation,

the precise definition of a PP is omitted. For the purposes of this chapter, a PP can be thought

of as a mapping between two well-defined finite measurable spaces. A simple one-dimensional

point process is shown in Figure 3.1, which depicts the occurrence of events (dots) along time

(line). In the context of a real-world application, each dot in Figure 3.1 may represent the

event that a call was received in a call centre while the location of the dots encodes the time a

call was received. In this type of modelling of PPs, these events or dots are modelled as arrival

times. Each dot corresponds to a time Ti for 1 ≤ t ≤ t, where Ti < Tj ∀i < j. Also, each Ti

is modelled as a random variable. However, the restriction imposed by Ti < Tj implies that

there is a strong dependence between Ti’s and therefore this type of mathematical modelling

may become convoluted.

Figure 3.1: One-dimensional point process (Weil, 2007).

An alternative way of modelling point processes is to study inter-arrival times, that is the

intervals between successive arrival times Si = Ti+1 − Ti
1.These have important theoretical

guarantees, such as the fact that S1, . . . , St are independent and identically distributed Poisson

random variables.

Figure 3.2: Arrival and inter-arrival times model of one-dimensional point process
(Weil, 2007).

A third way of modelling PPs is to “formulate a point process in terms of the cumulative

counting process” (Weil, 2007). The cumulative counting process Nt is defined as the number

1There is a notation overlap here. The definition of inter-arrival time Si is different from the definition of
segment Si defined in the previous chapters.
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of points arriving up to time t:

Nt =
∞∑
i=1

1{Ti ≤ t},

∀t ≥ 1. A simplification of the cumulative counting process is to use interval counts N(a, b] :=

Nb − Na for 0 ≤ a ≤ b. Instead of counting number of events cumulatively, the number of

events is counted on given intervals of time. Interval counts also have useful properties if they

are applied on disjoint intervals of time. An illustration of that type of counting is shown in

Figure 3.3. In the call centre example, the analogue to interval counts may be the number of

calls received by a centre every five minutes.

Figure 3.3: Interval counts on one-dimensional point process (Weil, 2007).

Since the focus of CPD detection is to model spatio-temporal processes, it is important

to define a point process in a spatio-temporal setting. A spatial point process X is “a finite

random subset of a given bounded region S ⊂ R2, and a realization of such a process is a

spatial point pattern x = {x1, . . . , xn} of n ≥ 0 points contained in S”, as defined in (Møller

and Waagepetersen, 2007). The number of points of a compact (bounded and closed) region or

set B ⊆ S is denoted by the random variable N(B). A spatial PP is shown in Figure 3.4. The

advantage of using interval or region counts over arrival and inter-arrival times is that there

is no analogue of the latter in higher dimensions. Also, there is a clear distinction between a

spatial PP and a spatio-temporal PP. A spatio-temporal point process is a collection of spatial

PPs ordered in time. In terms of a spatio-temporal PP, Figure 3.4 constitutes a snapshot in

time of that PP.

Additionally, it might be the case that more than one types of events occur within the

same process. Therefore, it is intuitive to encode this extra information by labelling events

using marks or ticks. These type of point processes are known as marked point processes.

Mathematically, this translates to modelling each point in the realisation of the process as a

tuple (xi, li), where mi is the label or mark of point i. In the example of the call centre, the
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Figure 3.4: Example of a spatial point process in R2 with counting r.v. (Weil, 2007).

incoming calls may be split into domestic and international calls. An illustration of a marked

spatial point process is shown in Figure 3.5.

Figure 3.5: Example of a marked spatial point process in R2 with three marks
(triangle,cross,circle). (Weil, 2007).

A special type of a point process is the Poisson point process. According to (Møller and

Waagepetersen, 2007), a Poisson processX defined on S with intensity measure µ and intensity

function ρ satisfies for any bounded region B ⊆ S with µ(B) > 0,

• N(B) is Poisson distributed with mean µ(B),

• Conditional on N(B), the points XB are i.i.d. with density proportional to ρ(u), u ∈ B.
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In the case where ρ(u) is constant ∀u ∈ S, the Poisson process is called homogeneous.

Homogeneity in PPs implies that the dispersion of points in a space S (usually R2) is governed

by the intensity function ρ. However, homogeneity is irrelevant to the shape realisations of

homogeneous processes take, which may chaotic with large number of points concentrated in

specific regions. Non-homogeneity implies that the number of points appearing in a region

depends on the location of that region. It is therefore possible to model non-homogeneous

processes as piecewise homogeneous, but this is outside the scope of this dissertation.

An entirely equivalent concept to a homogeneous point process is the stationary Poisson

process. A point process is said to be stationary on S ⊆ R2 (Weil, 2007) if

P({N(a, a+ b] = k})

depends on the length b but not on location b, ∀ b > 0, k ∈ {0, 1, . . . , }. We also define X to

be stationary respective isotropic if its distribution has rotational and translational invariance

in the space that X is defined.

Based on the above definitions, for the remainder of this chapter we will assume that

the data generating process Y1:t is a stationary and isotropic Poisson process with some fixed

intensity ρ.

3.2 Poisson Gamma model

λ

α

yt

β

t ∈ N

Figure 3.6: Plate diagram
for the univariate Poisson
Gamma model.

A conjugate model that effectively identifies change-points

in count data is the Poisson Gamma (PG) model. We therefore

assume that the DGP is a homogeneous Poisson process. The

underlying rationale is that each point of the DGP is assumed to

be drawn from a Poisson distribution with discrete intensity λ,

where λ itself is drawn from a Gamma distribution. The plate

diagram of this model is shown in Figure 3.6. The PG model

is by nature an one-dimensional model of count data but can

be extended to an arbitrary number of dimensions, say k, by
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defining a k-dimensional vector of independent univariate Poisson Gamma processes. However,

a limitation emerges from this type of modelling; covariance between processes is ignored. As

a result, the PG model identifies changes in the mean and variance of the only parameter

θPG = (λ).

3.2.1 Bayesian Analysis

Suppose that yt = (y1t, . . . ykt) is a k-dimensional vector. Let y1t, . . . ykt be iid Poisson

random variables with yij ∼ Poisson(λi) ∀ 1 ≤ i ≤ k, where λi is itself a random variable with

λi ∼ Gamma(αi0, βi0). The probability mass functions of the Poisson and Gamma distributions

are outlined in Appendix B. Also, note that αi0 and βi0 are fixed hyper-parameters that control

the shape and rate of the Gamma distribution which itself control the intensity λi of the Poisson

likelihood.

Consider the one-dimensional PG model (Hitchcock, 2014). Denote the distributions of

λi|yij, yij|λi, and λi|α0, β0 by π, g and p, respectively ∀ 1 ≤ i ≤ k, 1 ≤ j ≤ t. By Bayes’

theorem ∀ 1 ≤ i ≤ k, 1 ≤ j ≤ t it follows that

π(λi|yij) ∝ g(yij|λi)p(λi|αit, βit)

= e−λiλ
yij
i λαit−1

i e−βitλi

= λ
yij+αit−1
i e−λi(βit+1).

The parameter posterior distribution π at time t is also a Gamma distribution with shape

and rate parameters equal to α+ yij and β + 1, which implies that the PG model is conjugate.

The parameter posterior derived above is used in equation 2.11 for computing the posterior pre-

dictive density of yt, as explained in the previous Chapter. This posterior update is performed

independently for each one of the k data streams.

By performing the above update iteratively, we can obtain the following parameter updates
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at the end of the t-th iteration:

αit = αi0 +
t∑

j=1

yij

βit = βi0 + t,

(3.1)

where αi0 and βi0 are the fixed hyper-parameters of the model for each i = 1, . . . , k. Compu-

tationally, the parameter update is implemented by storing
∑t

j=1 yij for every i and possible

run-length. This quantity is known as a sufficient statistic because it is a function of the data

y sufficient to fully describe the parameter update.

At each iteration this update can be performed in O(1), given that relevant quantities are

stored throughout the execution ofthe algorithm. This is computationally very efficient and

facilitates CPD.

Moreover, ∀ 1 ≤ i ≤ k, 1 ≤ j ≤ t the posterior mean is equal to

αij +
∑t

j=1 yij

βij + t
=

∑t
j=1 yij

βij + t
+

αij
βij + t

=
t

βij + t

(
1

t

t∑
j=1

yij

)
+

βij
βij + t

(
αij
βij

)
,

where
αij
βij

is the prior mean, and 1
t

∑t
i=1 yij is the empirical mean. The expression above shows

that the posterior mean is a weighted average of the prior and empirical means. As t→∞ or

βij → 0, the empirical mean has a larger effect on the update and the prior influence fades.

Therefore, an unrepresentative prior mean would eventually not affect significantly the informed

or updated estimate of the mean. Analogously, the posterior parameter variance is equal to

αij +
∑t

i=1 yij
(βij + t)2

.

Parameter variance controls the uncertainty in the estimate of the parameter, which is modelled

as an r.v.. A smaller variance conveys more certainty about the parameter estimate and vice

versa.
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Finally, the univariate (k = 1) posterior predictive (Hitchcock, 2014) P(yt+1|y1:t) is equal

to

∫ ∞
0

P(yt+1|λ)P(λ|y1:t)dλ (3.2)

=

∫ ∞
0

e−λλyt+1

(yt+1)!

(β + t)α+
∑
i=1 tyiλα+

∑t
i=1 yi−1e−λ(β+t)

Γ(α +
∑t

i=1 yi)
dλ (3.3)

=
(β + t)α+

∑
i=1 tyi

Γ(yt+1 + 1)Γ(α +
∑t

i=1 yi)

∫ ∞
0

e−λ(β+t+1)λα−1+
∑t+1
i=1 yidλ (3.4)

=
(β + t)α+

∑
i=1 tyi

Γ(yt+1 + 1)Γ(α +
∑t

i=1 yi)

1

Z

∫ ∞
0

Ze−λ(β+t+1)λ(α+
∑t+1
i=1 yi)−1dλ, (3.5)

where Z , (β+t+1)α+
∑t
i=1 yi

Γ(α+
∑t+1
i=1 yi)

. Therefore, Ze−λ(β+t+1)λ(α+
∑t+1
i=1 yi)−1 is a Gamma density and there-

fore the integral evaluates to 1 by axioms of probability. As a result, the posterior predictive

becomes

(β + t)α+
∑t
i=1 yi

Γ(yt+1 + 1)Γ(α +
∑t

i=1 yi)

Γ(α +
∑t+1

i=1 yi)

(β + t+ 1)α+
∑t
i=1 yi

=

(
β + t

β + t+ 1

)α+
∑t
i=1 yi

(
1

β + t+ 1

)yt+1 Γ(α +
∑t+1

i=1 yi)

Γ(yt+1 + 1)Γ(α +
∑t

i=1 yi)
, (3.6)

which is a Negative Binomial distribution function with p = β+t
β+t+1

and r = α +
∑t

i=1 yi. The

posterior predictive is used in equation 2.21 for prediction, as shown in the previous Chapter.

Analogously to the posterior update, the posterior predictive can be extended to k dimensions

by performing the update above independently for all k data streams.

3.2.2 Sensitivity Analysis

Based on the Bayesian analysis in the previous section, we can only infer the PG model’s

ability to model the data generating process and estimate CPs to a limited extent. For instance,

the properties of the PG model reveal that it is impossible to identify changes in the covariance

between the intensities generating two different DGPs. In order to formally assess the PG

model’s flexibility to identifying CPs in various settings, we conduct a sensitivity analysis on

synthetic (artificially constructed) datasets.
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Before considering instances of CPD in synthetic datasets, it is important to identify the

factors affecting a model’s detection precision. One factor arises from the nature of the CPD

framework itself. On-line CPD incurs an important trade-off between detection latency and

accuracy. In simple terms, a CPD algorithm is more likely to accurately estimate CPs long

after they have occurred and vice versa. The reason accounting for that is the fact that the

algorithm has more evidence about the intensity of the process after the CP and can therefore

test the hypothesis that a CP occurred in the past more accurately. Another factor affecting

detection accuracy is the length of the segment preceding the CP. A longer stationary and

homogeneous segment allows the BOCDMS algorithm to establish a strong and stable belief

about the intensity of a DGP. Any systematic change to the trend governing that segment will

provide sufficient evidence for the presence of a CP and will thus increase the likelihood of

declaring a CP. In addition, in volatile data streams the BOCDMS algorithm is more likely

to declare a larger number of CPs, increasing the false positives rate. This is a result of the

frequent fluctuations in the data, which do not allow the algorithm to identify locally stationary

environments. Furthermore, the magnitude of the change in the model parameters directly

affects CP estimation. Small in magnitude changes are less likely to be classified as CPs due

to the fact that they are likely under the evidence density and can therefore be explained by

the variance of the model. On the contrary, large and abrupt changes are more likely to be

declared as CPs, as the on-line algorithm cannot assess whether they are outliers or part of

a new trend. Finally, prior specification of the hyper-parameters has a significant impact on

CPD. A strong unrepresentative prior may pollute the belief about the true value of the model

parameters. Under the presence of new data the effect of the prior information on parameter

mean and variance may gradually disappear. In the case of the PG model the rate at which

priors seize to effect posterior beliefs about the mean is exponential, as shown in the derivation

of the posterior parameter mean in the previous section.

Among all the factors mentioned, prior hyper-parameter specification appears to have the

largest impact on CPD. Depending on the model, strong prior beliefs about model parameters

that are close enough to their ‘true’ values will yield more accurate CPD results that strong

beliefs that are far away from the truth. To avoid introducing variance in performance and

accuracy when assessing models in the synthetic datasets below, we assign weak uninformative

to model hyper-parameters. For the PG model, we set α = β = 1 for the remainder of this
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Chapter.

We now consider a showcase example of CPD using the PG on a simple synthetic dataset

shown in Figure 3.7. Each dimension of the dataset is a piece-wise constant function. In

this example, all CPs were identified by the PG model independently for each of the three

dimensions. This is evident at time t = 120, where the run-length distribution is bimodal

indicating the existence of two likely hypotheses. The one hypothesis is that there is no CP,

which is the case for the green and red data streams, while the second hypothesis supports the

existence of a CP, which occurs in the blue stream. Also, the lack of volatility allows the PG

model to accurately estimate CPs without increasing the false positive or false negative rate.

However, under a different regime the PG model fails to identify CPs on-line, as shown in

Figure 3.8. Denote the true segment length by lsegment and the true number of CPs by ncps.

It is clear that the small segment length does not enable the algorithm to establish a baseline

behaviour of the process and therefore fails to identify any CP. Equally important are the small

in magnitude changes that occur. Under a Poisson likelihood with intensity λ, the mean and

variance are both equal to λ. The mean is of the two streams vary from 11 to 15 units while the

changes vary from 2 to 4 units. Therefore, under the assumption that the DGP is generated

by a Poisson model these changes can be explained by the variance of the model, which also

varies from 11 to 15 units. Despite that limitation, the algorithm has gathered evidence for the

existence of a CP at times t = 5 to t = 20, t = 35 to t = 60 and t = 65 to t = 100 without

declaring a CP at any of those times.

Based on the conclusions drawn from Figure 3.8, we extended the segment length lsegment

and increased the absolute magnitude of the changes appearing that dataset. The results are

summarised in Table 3.1. By tuning the segment length and the magnitude of the changes, one

can determine when the PG model ‘breaks’.
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Figure 3.7: CPD using the PG model on a three-dimensional synthetic dataset. The
dataset is shown on the top while the run-length distribution and CPs are shown in
the bottom part of the Figure.

Figure 3.8: CPD using the PG model on a synthetic dataset with lsegment = 10,
ncps = 10.

Figure Name lsegment Change stretching factor ncps % of CPs identified
3.9a 50 1 9 22%
3.9b 100 1 9 33%
3.9c 150 1 9 78%
3.10a 10 2 8 38%
3.10b 10 3 8 63%
3.10c 10 4 8 88%

Table 3.1: Table summarising segment extensions, change increases and the corre-
sponding detection accuracy.

33



According to Table 3.1, increasing the segment length has a small effect on the detection

accuracy. The evidence for the existence of a CP at the time referred to above is stronger in

the extended datasets shown in Figures 3.9a to 3.9c but not sufficient for declaring a CP using

the MAP estimator. On the contrary, increasing the magnitude of changes significantly boosts

detection accuracy. This is attributed to the fact that the absolute changes are proportional to

the variance of the process, as modelled by the Poisson distribution. We can therefore infer that

the Poisson process is more likely to perform satisfactorily in volatile regimes where the absolute

changes in the process are proportional to its variance. The run-length distribution in Figures

3.10a to 3.10c indicates that the abundance of possible hypotheses decreases as the magnitude

of changes increases. This is particularly evident in Figure 3.10c, where the algorithm rejects

almost any alternative hypothesis, which makes CP detection more clear-cut. In contrast, the

run-length distribution in Figure 3.10a does not reject the hypothesis that there is no CP since

t = 0 until t = 70, which renders the MAP segmentation more uncertain.

(a) CPD using the PG model
on dataset 3.8 extended to
lsegment = 50.

(b) CPD using the PG model
on dataset 3.8 extended to
lsegment = 100.

(c) CPD using the PG model
on dataset 3.8 extended to
lsegment = 150.

(a) CPD using the PG model
on dataset 3.8 stretched by a
factor of 2.

(b) CPD using the PG model
on dataset 3.8 stretched by a
factor of 3.

(c) CPD using the PG model
on dataset 3.8 stretched by a
factor of 4.
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3.3 Multinomial Dirichlet model

η

Λ yt

t ∈ N

Figure 3.11: Plate diagram
for the multivariate Multino-
mial Dirichlet model.

A multivariate extension to the PG model that also belongs

in the conjugate family of distributions is the Multinomial Dirich-

let (MD) model (Nelson, 1985a). The MD model addresses the

limitation of the PG model and takes into account covariance

when assessing the likelihood of a CP. The MD model differs

from the PG model in the way it models intensity ρ. In particu-

lar, MD treats each one of the k data-streams as fractions of one

cumulative data stream with intensity Λ. Therefore, each data

stream has intensity Λi := λi
Λ

, where λi and Λi are the absolute

and relative or normalised intensities of data stream i ≤ k. By

definition, Λ :=
∑k

i=1 λi and as a result
∑k

i=1 Λi = 1. Despite this normalisation, the Multino-

mial component of the MD model identifies changes in the absolute intensities that generate

the point process. The structure of the MD model indicates that it is particularly useful in

categorical data applications. This model is depicted in a plate diagram shown in Figure 3.11.

3.3.1 Bayesian Analysis

Suppose that yt = (y1t, . . . ykt), Λt = (Λ1t, . . . ,Λkt) and ηt = (ηt1, . . . , ηtk) are all k-

dimensional vectors. Let

yt ∼Multinomial(Λt, n),

where n :=
∑k

i=1 yit, 0 < Λit < 1 ∀ i = 1, . . . , k,
∑k

i=1 Λit = 1 and

Λt ∼ Dirichlet(ηt),

with ηit > 0 ∀ i = 1, . . . , k, . The probability density functions of the Multinomial and Dirichlet

distributions are outlined in Appendix B.

Denote the distributions of Λt|yt, yt|Λt, n, and Λt|ηt be π, g and p, respectively. Therefore,
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by Bayes’ theorem the posterior distribution after one update (Tu, 2014) is equal to

π(Λt|yt) ∝ p(Λt|ηt)g(yt|Λt, n)

∝
k∏
i=1

Ληit−1
it

k∏
i=1

Λyit
it

=
k∏
i=1

Ληit+yit−1
it

Therefore, π is exactly the density of the Dirichlet distribution with updated parameters

ηit + yit ∀1 ≤ i ≤ k and, which implies that the MD model is conjugate. Extending this

argument to argument to t updates yields the following update on η:

ηt = η0 +
∑

yτ∈{y1,...,yt}

yτ (3.7)

where η0 is the fixed prior hyper-parameter. The sufficient statistic of this update is
∑

yτ∈{y1,...,yt} yτ ,

which is stored for every dimension and possible run-length.

The posterior mean of Λt after one update is equal to

ηit + yit∑k
j=1 ηjt + yjt

,

∀i = 1, . . . , k, while its posterior variance is equal to

(ηit + yit)(η0 − (ηit + yit))

η2
0(η0 + 1)

,

where η0 :=
∑k

i=1 ηit ∀i = 1, . . . , k. Finally, the posterior covariance between two normalised

intensities Λit and Λjt is equal to
−ηitηjt

η2
0(η0 + 1)

,

∀i 6= j ∈ {1, . . . , k}.

The posterior predictive distribution (Tu, 2014) at time t in equation 2.21 is equal to

Γ(n+ 1)∏k
i=1 Γ(yit + 1)

Γ(
∑k

i=1 η
′
it)∏k

i=1 Γ(η′it)

∏k
i=1 Γ(yit + η′it)

Γ(n+
∑k

i=1 η
′
it)
,
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where η′it is the updated posterior parameter of data stream i and Γ is the Gamma function.

The derivation of the posterior predictive is omitted because it requires the use of tools that

are outside the scope of this dissertation. The kernel of its posterior predictive is similar to

the kernel of a Multinomial Dirichlet distribution, which is not directly available in a Python

library. This implies that its computation was achieved by calculating the products of gamma

functions, which incurred delays in the computation. For that reason we provide a simplified

efficient calculation by taking the logarithm of the posterior predictive. Hence, the expression

above is simplified to:

(3.8)log

(
Γ(n+ 1)Γ

( k∑
i =1

η′it

))
+

k∑
i =1

log (Γ(yit + η′it))

−
k∑

i =1

(
log (Γ(yit + 1)Γ(η′it))

)
− log

(
Γ
(
n+

k∑
i =1

η′it

))

3.3.2 Sensitivity Analysis

The MD model addresses two limitations of the PG model: the problem of relative sizes of

the changes in a DGP with respect to its variance and the inability to identify CPs in covariance

between DGPs. For the remainder of this section we fix η to be equal to the k-dimensional

unit vector, where k is the number of dimensions in the data.

A showcase example of an application of the MD model on a synthetic dataset is shown in

Figure 3.12. The run-length distribution provides strong evidence for a correct MAP estimate,

which is partially attributed to the sufficiently large segment length.

Regarding pathological cases, we applied the MD model on the dataset shown in Figure

3.8. The improvement in performance was marginally better than the performance of the PG

model as only one CP was identified. However, the MD model provided a stronger evidence for

the existence of other undeclared CPs compared to the evidence provided by the PG model.

For a direct comparison, the MD model was applied to the same synthetic datasets as

the PG model. The effect of extending segment lengths and increasing the magnitudes of

changes in the data is summarised in Table 3.2. According to that Table and Figures 3.14a to
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Figure 3.12: CPD using the MD model on a three-dimensional synthetic dataset with
lsegment = 50. The dataset is shown on the top while the run-length distribution and
CPs are shown in the bottom part of the Figure.

Figure 3.13: CPD using the MD model on a synthetic dataset with lsegment = 50,
ncps = 9.

Figure Name lsegment Change stretching factor ncps MD model accuracy PG model accuracy
3.14a 50 1 9 56% 22%
3.14b 100 1 9 56% 33%
3.14c 150 1 9 56% 78%
3.15a 10 2 8 38% 38%
3.15b 10 3 8 63% 63%
3.15c 10 4 8 88% 88%

Table 3.2: Table summarising increases in the magnitudes of the changes of DGPs
and the corresponding detection accuracy.
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3.14c, the segment length has in general very little effect in the number of CPs identified by

the MD model. Therefore, CPD under the MD model had segment-length invariance, which

guaranteed consistent performance of the MD model in different settings. On the other hand,

increasing the magnitudes of the changes, as shown in Figures 3.15a to 3.15c, increased the

detection accuracy. In fact, the increase in change magnitude had the same effect on CPD under

both the PG and MD models. As the stretching factor of changes increased, CP declarations

became more distinct. The fact that both models’ capacity to detect CPs is directly affected

by the magnitudes of the changes themselves indicates that both models are more likely to be

susceptible to declare outliers as CPs.

(a) CPD using the MD model
on dataset 3.13 extended to
lsegment = 50.

(b) CPD using the MD model
on dataset 3.13 extended to
lsegment = 100.

(c) CPD using the MD model
on dataset 3.13 extended to
lsegment = 150.

(a) CPD using the MD model
on dataset 3.13 stretched by a
factor of 2.

(b) CPD using the MD model on
dataset 3.13 stretched by a factor
of 3.

(c) CPD using the MD model
on dataset 3.13 stretched by a
factor of 4.
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3.4 Model comparison

Overall, we can argue that the MD model is an extension of the PG model in the multivari-

ate setting. in essence, the MD model encapsulates the capabilities of the PG model. In terms

of application, the PG model is more appropriately used in count data while the MD model

performs best in categorical data. However, the MD model can identify more subtle changes

in covariance of the intensities governing the DGPs. Moreover, the PG model is more prone to

not identifying CPs when the length of the segments is small whereas the MD model’s ability

to detect CPs appears to be independent of the segment length. Finally, both models are less

effective in identifying CPs when the magnitudes of the changes are insignificant. However,

given the current on-line CPD framework the models maintain a good performance in a variety

of different data regimes. However, there is ample opportunity for improving the CPD in a

discrete setting by enriching the model universe with other point processes models. Suggestions

about such models are proposed in Chapter 5.

3.5 Model-specific algorithm

We end this chapter by summarising the use of the quantities derived in the Bayesian Anal-

yses sections of the PG and MD models in Algorithm 2. We call this Algorithm Model-specific

Bayesian On-line Change-point Detection (MSBOCD). MSBOCD illustrates the execution of

BOCDMS for a given choice of model.

Regarding the time complexity of MSBOCD, it is linear in the number of observations, as

is BOCDMS. Lines 6-9 take O(1) as they correspond to initialising appropriate data structures.

The second step of the algorithm (lines 13-16) is computed in O(Rmax), where Rmax is the num-

ber of retained run-lengths. Specifically, line 13 utilises the posterior predictive distributions

3.6 and 3.8 of the PG and MD models, respectively. Overall, the model-specific BOCPD has

computational complexity equal to O(Rmaxt) after t observations.

As far as space complexity is concerned, the possible run-lengths and their corresponding

probability, which together specify the run-length distribution, are stored in numpy arrays.
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After run-length pruning, this translates to a space complexity of O(Rmax). In addition to that

array, the PG and MD models keep track of their corresponding sufficient statistics 3.1 and

3.7, which for a k-dimensional model incurs a storage cost of O(Rmaxk). This translates to an

overall space complexity of O(Rmaxk) for the MSBOCD algorithm.

Algorithm 2 Model-specific Bayesian On-line Change-point Detection (MSBOCD)

1: Input at time 0: Hazard H, prior q.
2: Input at time t: next observation yt.
3: Output at time t: Posterior predictive distribution of Ŷ(t+1):(t+hmax), Run-length rt dis-

tribution.
4: for next observation yt at time t do
5: if t = 1 then
6: # Step 1: Initialisation.
7: Compute model log-evidence according to 2.15.
8: Initialise run-length distribution using 2.8.
9: Initialise relevant sufficient statistics for all possible run-lengths.

10: else
11: # Step 2: Posterior computations.
12: for rt = 0, 1 . . . , t do
13: Compute the log densities of yt using the predictive posteriors shown in 2.11.
14: Update sufficient statistics.
15: Compute posterior predicted expectation from the current posteriors.
16: Compute posterior predicted variance from the current posteriors.
17: end for
18: Output: Posterior predictive distribution of Ŷ(t+1):(t+hmax), Run-length rt distribution.
19: end if
20: end for
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Chapter 4

Real-data applications

Objectives:

X Applying the MSBOCD algorithm to Chicago crime data.

X Applying the MSBOCD algorithm to UK Property transactions data.

X Applying the MSBOCD algorithm to cryptocurrency transaction frequency data.

X Fine-tuning model hyper-parameters and interpreting CPs where possible.

X Assessing individual model performance and drawing comparisons between models.

So far, we have examined the performances of the Poisson Gamma and Multinomial Dirich-

let models on synthetic simulations of data. In order to obtain a holistic view of the flexibility

and robustness of each model, we apply them on three real-world datasets. The first case study

we consider is the Chicago crime data1 obtained from the Chicago Data Portal. The second

case study includes a dataset about the property transactions in the UK2, as registered by the

Office for National Statistics. Finally, we apply the CPD algorithm in cryptocurrency trans-

action volume data3 obtained from Kaggle. The BOCDMS algorithm is executed using both

the Poisson Gamma and Multinomial Dirichlet model separately on each dataset. Since these

1Data accessible here
2Data accessible here
3Data accessible here
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datasets have not been used in previous approaches in literature, that is they are unsupervised,

we attempt to establish a benchmark for assessing their performance by mapping their declared

CPs to real-world events.

4.1 Chicago crime

A common application of point processes is found in crime data (Albertetti et al., 2016).

The location and abundance of crimes renders crime data ideal for spatio-temporal modelling.

This is because the number of crimes across a fixed geographical region S can be modelled as

a marked point process, where each mark corresponds to a different location or sub-region of

S. Also, the fact that crime data is seasonal enables us to assess model performance under the

presence of seasonality without any deseasonalisation preprocessing. We focus of identifying

CPs in the number of crimes committed on a daily basis in Chicago, Illinois from 2001 to 2017.

The locations of crimes during that period are depicted in Figure 4.1. This Figure indicates

that it is possible to model the DGP as a marked PP with each label representing a different

region of the Chicago area. However, in practise it is difficult to establish boundaries and define

local regions within the observation window shown in Figure 4.1. A naive spatial segmentation

where the Chicago area is divided into equal in area regions would result in areas where very

few and possibly no crimes are recorded. This phenomenon is commonly referred to in PP

theory as edge effects. More advanced spatial segmentation techniques are outside the scope

of this dissertation and are therefore not considered. For that reason, we model all crimes as

an one-dimensional PP. The consequence of aggregating over all Chicago regions is that the

flexibility of the model becomes limited. CPs that occur in specific areas of Chicago may not be

detected if aggregation occurs due to a phenomenon known in Statistics as Simpson’s paradox.

4.1.1 Hyper-parameter tuning

CP declaration is heavily dependent on hyper-parameter prior specification, as argued in

Chapter 3. Different priors will yield different CPD results. Therefore, it is vital to fine-tune

each model’s prior hyper-parameters. For the PG model, these are α and β. These are used in

the Gamma distribution to control the intensity of the Poisson likelihood. An uninformative

43



Figure 4.1: Location and number of crimes committed in Chicago during 2001 to
2017.

prior sets both α and β to equal to one and the prior Hazard equal to 30. As there is no

expertise knowledge about the abundance of crimes we choose an uninformative prior. For

comparison, we set α = 8000 and β = 20, which translate to a prior mean and variance equal

to 400 and 20, respectively.

4.1.2 CPD results

Since the data is univariate, the MD and PG models produce almost identical CPD results

as the PG model is the univariate version of the MD model. Hence, we only illustrate the results

of running the PG model in Figure 4.2. According to that Figure, the data has a strong seasonal

factor that the CPD algorithm effectively identifies. Hence, a trend-blind model manages to

detect seasonality in a an on-line setting. However, this has consequences on the detection of

the trend of the data. It is evident that there is a decreasing linear trend which is concealed

by the seasonality and is thus not detected.

By manually fine-tuning the prior specification, the results of the CPD differ significantly,

as depicted in Figure 4.3. The effect of the informed prior is evident on the run-length distri-

bution, which is piecewise linear. Therefore, there are no alternative hypotheses for the MAP
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Figure 4.2: CPD using the PG model on the Chicago dataset using α = β = 1 as
prior specification.

Figure 4.3: CPD using the PG model on the Chicago dataset using α = 8000, β = 20
as prior specification.

estimator to assess. Moreover, the cause of each CP identified is cited in Table 4.1. It is evident

that the CPs identified can be attributed to real events and therefore were correctly identified.

For instance, at t = 3956 (April 2004) the Chicago Police Department reported that it had the
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lowest crime rate since 1965. As a result, we can conclude that the performance of the two

models is significantly boosted by fine-tuning the hyper-parameters.

Time t Date Event
2861 January 2003 Chicago Police Department installs POD’s

(Police Observation Devices) in high crime
areas.

3956 April 2004 Chicago Police Department adopts IT-based
crime-fighting techniques recommended by
the Los Angeles and New York City Police
Departments.

4687 March 2005 14 Chicago Mafia members are indicted near
the end of April 2005.

Table 4.1: Mapping CPs to events from 2001 to 2017 related to crime in the vincinity
of Chicago, Illinois.

4.2 UK property transactions

Another area where CPD can provide useful insights is real estate. The ability to identify

the time when the housing market undergoes changes enables a real estate agent to invest

accordingly. For instance, being able to detect a housing bubble while its happening can help

agents make lucrative investments. That is why we consider the monthly number of property

transactions in the United Kingdom from April 2005 to February 2018 with value £40000

and above. We model the PP as marked, where the labels are England, Scotland, Wales and

Northern Ireland.

4.2.1 Hyper-parameter tuning

After fine-tuning the hyper-parameters of the two models, we found that an uninformative

prior would cause the MD model to over-fit the data while an uninformative prior would result

in the PG model under-fitting the data. For that reason, we omitted these cases from considera-

tion. For the MD model, we set η = (1150, 1150, 1150, 1150)T and the prior Hazard to be equal

to 30.This results in a prior mean intensity of the process equal to (0.25, 0.25, 0.25, 0.25)T and

a prior variance in the intensity equal to (0.0.0000408, 0.0.0000408, 0.0.0000408, 0.0.0000408)T ,
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according to the Dirichlet prior.

4.2.2 CPD results

Figure 4.4: CPD using the PG model on the property transactions dataset using
α = β = (1, 1, 1, 1)T as prior specification.

The results of applying the two models in the four-dimensional property transactions

dataset are shown in Figures 4.4 and 4.5. In these Figures, England, Scotland, Wales and

Northern Ireland are drawn in blue, orange, green and red respectively. We replicate results

of CPD using both models in Figure 4.6 in order to avoid issues of relative scale. Also, we

interpret some of the CPs identified by the two models in Table 4.2.

As far as the PG model is concerned, it detects two clear shifts in the mean of the data

at times t = 31 and t = 97 and does not misinterpret the outlier at t = 131 as a CP. These

shifts can be identified by closely examining both plots in Figure 4.6. The fact that property

transactions among different areas of the UK are strongly correlated implies that CPs are often

common for all dimensions of the data and is therefore difficult to attribute the cause of a CP

to the changing pattern of a specific dimension of the data. According to Table 4.2, the CP at

t = 31 coincides with the beginning of the global financial crisis. Therefore, we can argue the

declared CPs by the PG model are to a certain extent indicative of the structural changes the
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Figure 4.5: CPD using the MD model on the property transactions dataset using
η = (1150, 1150, 1150, 1150)T as prior specification.
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Figure 4.6: Monthly property transactions in England (blue), Scotland (orange),
Wales (green) and Northern Ireland (red) from April 2005 to February 2018. CPs
detected by the PG and MD models are shown in black dashed and solid lines,
respectively.

UK property market experienced.
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Regarding the MD model, it identified seven CPs two of which were also declared under

the PG model. After the first detected CP at t = 27, the variance of transactions increases

abruptly in all UK regions. In addition, during the three CPs identified between April (t = 25)

and September (t = 30) 2017 the pairwise covariance between property transactions in Scotland,

Wales and Northern Ireland appears to be changing. The detection of change in covariance

illustrates the high flexibility of the MD model compared to the naive multivariate extension of

the PG model. Moreover, the CP at November 2008 (t = 44) appears to pinpoint a temporary

drop in the mean transactions across all regions. According to Table 4.2, the house prices

witnessed the largest percentage drop in that November. Finally, the last CP detected at

t = 131 corresponds an outlier in the data most likely caused by the announcement of the

Brexit referendum, as alleged in Table 4.2.

Time t Date Event

31 October 2007 Global financial crisis begins with a crisis in
the subprime mortgage market in the United
States.

44 November 2008 Second largest percentage decrease in UK
house prices in the post-financial crisis era
according to Nationwide.

97 April 2013 Mortgage costs start to fall due to the Gov-
ernment and Bank of England’s Funding for
Lending scheme.

131 February 2016 Former prime minister David Cameron an-
nounces Brexit referendum on the following
summer.

Table 4.2: Mapping CPs identified by the PG and MD models to events from April
2005 to February 2018 related to real estate in the United Kingdom.

4.3 Cryptocurrency transactions

The last application we consider is based on transaction counts of three prominent cryp-

tocurrencies. CPs in cryptocurrency transactions are important because they can reveal shifts

in demand of these currencies and can assist market analysts in predictive tasks. We model

the transaction counts of Bitcoin (BTC), Ethereum (ETH) and Litecoint (LTC) jointly using

a three-dimensional model. Also, we narrow the time frame to daily transactions between 20
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February 2017 and 20 February 2018.

4.3.1 Hyper-parameter tuning

In regards to hyper-parameters, an informed prior specification on the both models results

in data over-fitting. For the PG model, we set α = (150, 150, 150)T and β = (6, 6, 6)T , which

suggests a prior intensity mean and variance equal to 25 and 4.17, respectively, for every dimen-

sion of the data. The MD model receives a prior η = (4.000.000.000, 4.000.000.000, 4.000.000.000)T

based on the expected number of daily transactions of cryptocurrencies. The prior Hazard is

set by default to 30 for both models.

4.3.2 CPD results

Figure 4.7: CPD using the PG model on the cryptocurrency transaction volumes
dataset using α = (150, 150, 150)T and β = (6, 6, 6)T as prior specification.

The results of applying the BOCDMS algorithm on the cryptocurrency data are shown in

Figures 4.7 and 4.8 for the PG and MD models, respectively. Figures 4.9 and 4.10 replicate

the CPD results by depicting the LTC data on a separate plot for clarity. Table 4.3 attempts

to identify the possible cause of a some the identified CPs.
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Figure 4.8: CPD using the MD model on the cryptocurrency transaction volumes
dataset using η = (4.000.000.000, 4.000.000.000, 4.000.000.000)T as prior specifica-
tion.

The PG model identifies CPs in the variance of ETH & LTC at t = 72, 90, 207 and BTC,

ETH & LTC at t = 289. The CP in the latter case can also be attributed to a shift in the mean

of the data. However, due to the high volatility in the data we can argue that these CPs are

also caused by a shift in the variance. Shifts in the mean are observed at t = 23 and t = 254

but it is equally possible that these CPs are caused by a change in variance. Furthermore, an

important feature of the PG model is that it effectively discovers the major structural changes

in the data by analysing it macroscopically.

On the other hand, the MD model is more sensitive to the fluctuations in the data and

therefore detects a larger number of CPs. Contrary to the PG model, it examines the data

on a microscopic level and identifies subtle changes in it. The sensitivity of the model can be

adjusted by optimising the prior hyper-parameter specification. Moreover, the CPs detected at

t = 110, 117, 120, 150, 219 are most likely caused by a change in mean or variance while the CP

t = 183 seems to be cause by a change in covariance between ETC and LTC. The three CPs

occurring between t = 291 and t = 297 identify changes in the mean variance and covariance

of all three cryptocurrencies. Finally, the CP at t = 321 pinpoints a shift in the mean of ETH

and BTC while the CP at t = 358 can associated with a change in variance of the transactions
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of all three cryptocurrencies.
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Figure 4.9: Daily cryptocurrency transactions in Bitcoin (blue), Etherium (orange)
and Litecoin (green) from 20 February 2017 to 20 February 2018. CPs detected by
the PG model are shown in black solid lines.
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Figure 4.10: Daily cryptocurrency transactions in Bitcoin (blue), Etherium (orange)
and Litecoin (green) from 20 February 2017 to 20 February 2018. CPs detected by
the MD model are shown in black solid lines.

52



Time t Date Event

23 14 March 2017 The U.S. Securities and Exchange Commis-
sion on Friday denied a request to list Win-
klevoss twins’ Bitcoin Ethereum COIN.

90 20 May 2017 Bitcoin and Ethereum are two of Google’s
most popular searches this week.

207 14 September 2017 Beijing orders cryptocurrency exchanges to
stop trading and blocks new registrations.

254 31 October 2017 CME Group, the world’s largest exchange
operator by market value, is readying plans
to offer futures on bitcoin.

289 05 December 2017 Bitcoin jumps above $12,000 to record high.

Table 4.3: Mapping CPs to events from 20 February 2017 to 20 February 2018
related to Bitcoin, Etherium, and Litecoin transactions.
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Chapter 5

Conclusions

Objectives:

X Summarising thesis work and personal contributions.

X Discussing achievements and limitations with reference to the project’s objectives.

X Proposing directions for future work.

X Addressing legal, social, ethical and professional issues.

In this thesis we have introduced CPD problems in the context of time series and provided

a formal mathematical formulation of a general CPD problem. Chapter 1 demonstrates the

notion of change-point with the aid of graphs illustrating changes in the mean, variance and

covariance of time series. The need for CPD algorithms is motivated by the usefulness of their

application in medicine and climate change. Moreover, the motivation of CPD is complemented

by a comprehensive literature review of CPD techniques in off-line, frequentist and temporal

settings. By addressing the limitations of existing methods, we propose a Bayesian on-line CPD

framework in a spatio-temporal setting based on the works of (Knoblauch and Damoulas, 2017;

Adams and MacKay, 2007; Fearnhead and Liu, 2007).

We proceed by defining important tools required for the construction of the BOCDMS

algorithm, such as stationarity and Bayes’ theorem. Then, we outline the building blocks of

the CPD system by summarising the assumptions required for its development. Under the PPM
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model, we define the run-length and model random variables that facilitate the computation of

the MAP segmentation estimators and the h-step ahead predictions. After specifying the prior

distributions of these r.v.’s we cite key recursive equations that are computed in the system

using a dynamic programming paradigm. These equations are compiled into the BOCDMS

algorithm and its extensions: model selection and run-length pruning. Chapter 2 ends by

analysing the computational and storage complexities of the BOCDMS algorithm, which are

O(|M|RmaxT ) and O(|M|Rmax) for T data observations.

Furthermore, Chapter 3 extends the algorithm to point processes by introducing funda-

mental concepts in point process modelling, such as homogeneity and isotropy. Then, we enrich

the model universe M by incorporating two parametric Bayesian conjugate models: the Pois-

son Gamma and Multinomial Dirichlet models. For each model, the parameter posterior and

posterior predictive distributions are derived. After carrying out a Bayesian analysis, we exam-

ine the sensitivity of each model in synthetic datasets and address its limitations by applying

it on datasets in which it underperforms. What follows is a comparative analysis of the two

models in reference to their attributes and capabilities.

Finally, we apply the two models separately on three real-world datasets: crime in Chicago,

property transactions in the UK and cryptocurrency transactions. For each dataset, the model’s

priors are fine-tuned and its performance is evaluated. There is also an attempt to map the de-

tects CPs to real-world events in the news in order to establish a benchmark for the performance

of the models.

We end this dissertation by discussing project achievements and limitations, suggesting

future points of action and addressing legal, social, ethical and professional issues.

5.1 Project evaluation

For the discussion of the project’s achievements and limitations we provide account of the

project’s objectives in Appendix A, as outlined in the Progress Report.

According to these requirements, Chapters 1 and 2 meet OBJ1 as outlined in the thesis

summary above. As far as OBJ2 is concerned, OBJ2.1 and OBJ2.2 are met in Chapter 3.
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However, we modified objective OBJ2.3 and instead of implementing Gaussian Cox processes,

we implemented the Multinomial Dirichlet model. This decision was based on the fact that

the MD model is the multivariate extension of the PG model and therefore the MD model’s

implementation was a more natural progression after the achievement of OBJ2.1 and OBJ2.2.

Finally, OBJ3 was also completed and extended. In an effort to introduce variety in the real-

world applications and provide a holistic evaluations of both models, we fed a third type of data

(UK property transactions) to the algorithm. Consequently, OBJ3.1 was modified to include

three sources data instead of two. Moreover, hyper-parameter tuning ( OBJ3.2) and perfor-

mance metrics (OBJ3.3) can be found in Chapters 2 and 3. Regarding visual representations of

CPD results (OBJ3.4), they are illustrated in Figures included in Chapters 2, 3 and 4. Finally,

we extended OBJ3 and achieved an additional objective: “Establish performance benchmarks

for unsupervised datasets to assess model-specific CPD results”.

Overall, this project manages to go beyond the initial requirements set in the Progress

report. The personal contributions made in Chapters 3 and 4 assist the work of Theodoros

Damoulas and Jeremias Knoblauch and implements extensions proposed by the latter in Knoblauch

and Damoulas (2017).

Furthermore, the project faced a number of obstacles during its completion, all of which

were overcome. The implementation of the MD model was delayed due to the inefficient cal-

culation of the posterior predictive and the existence of a bug in the code. However, after

consulting the supervisor, Theodoros Damoulas, these issues were quickly resolved. In addi-

tion, the fact that CPD is an active research area meant that the requirements of the project

had to be changed relatively frequently. In response to this agile project environment, we had

frequent meetings with Jeremias Knoblauch and Theodoros Damoulas to discuss future direc-

tions of the project. Finally, near the end of the project key components of the code were

updated by Jeremias Knoblauch to resolve bugs in model selection. However, the code written

for the PG and MD models could not be updated in order to achieve compatibility with other

key components of the codebase. As a result, model selection using a model universe with

both the PG and MD models was not implemented. However, the fact that the MD model

is the multivariate version of the PG model eliminated the need for model selection between

univariate and multivariate models.
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In addition, the limitations faced in this project can be divided into algorithm and model

specific. Regarding the algorithm, hyper-parameter tuning was manually done and therefore

it is not guaranteed that the hyper-parameters chosen are optimized. Also, the lack of a loss

function did not provide us with a measure of model fit and error.

The second type of limitations originated from the models chosen to equip the model

universe. While the choice of spatio-temporal point process models yielded high performances

in the CPD task, they were based on assumptions about the structure and properties of the data

they modelled. First of all, the model universe was restricted to conjugate models because of

their high efficiency in computing MAP estimates in an on-line setting. However, non-conjugate

models may have been able to provide additional capabilities for detecting CPs. Moreover, the

assumptions about space homogeneity and isotropy of the PP may not be applicable to a

number of real-world datasets. Due to the stochastic nature of most real-world datasets, it

is often unrealistic to assume that the data meets some stability conditions. As a result, the

models used to mimic the DGP may often be simplifications of reality and therefore may not

capture the signal in the data.

5.2 Legal, Social, Ethical and Professional Issues

This dissertation did not face any legal, social, ethical or professional issues. Regarding the

use of data, the datasets in Chapter 3 were obtained from open licence-free sources and therefore

there were no legal requirements for their use. Also, there were no professional issues raised

during the collaboration with Jeremias Knoblauch and Theodoros Damoulas. Overall, the

project was completed smoothly and met all the required legal, social, ethical and professional

obligations.

5.3 Future work

This thesis provides ample opportunities for future work based on the limitations addressed

in the previous section.
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First, we propose the development of a new component in the BOCDMS algorithm that

optimizes the value of the hyper-parameters based on a fitness function such as the one suggested

by (Khan et al., 2016). Alternative approaches may involve placing another prior on the hyper-

parameters and sampling its posterior using sequential Monte Carlo techniques as proposed by

(Svensson et al., 2015). This also motivates the computation of a loss function or its Bayesian

analogue: Bayes factors. As a result, we can establish a mathematical benchmark for model

performance.

Next, we propose the use of non-conjugate models in the models universe. Despite the

fact that these models tend to be more computationally costly, there have been efficient on-line

approaches (Turcotte and Heard, 2015) that do not directly compute the parameter posterior

but sample from it. Finally, we suggest the implementation of inhomogeneous point process

models that minimize the number of assumptions made about the data’s properties. These

models include Cox processes (Cressie, 1993), which are inhomogeneous generalisations of Pois-

son processes where the intensity ρ(t) is itself a time-dependent stochastic process.
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Appendix A

Project objectives

Objective Priority Description

OBJ1 High

Conduct a comprehensive literature review of the current methods used

in various settings, i.e. CP detection in offline (batch) multivariate

setting.

OBJ1.1 High Understand how the PPM model works in a Bayesian setting.

OBJ1.2 High Understand the use of MAP technique to estimate and predict CPs.

OBJ1.3 High Study the use of sparse GMs to model relationships between variables.

OBJ1.4 High Study the main algorithm combining these techniques to detect CPs.

OBJ2 High Extend the software’s functionality to CP detection of point processes.

OBJ2.1 High
Study the Poisson Gamma model and the effect of conjugacy on its

posterior distributions.

OBJ2.2 High
Implement the PG model in Python while adhering to the principles of

dynamic programming.

OBJ2.3
Medium-

Low
Incorporate more sophisticated models for Gaussian Cox processes.

OBJ3 High
Feed one or two types of data to the system to evaluate its performance

in action.

OBJ3.1 High Include crime and/or financial data as two different sources of data.
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OBJ3.2 Medium

Experiment with online algorithm by running simulations with different

initial parameters and assess their impact on CP detection and predic-

tion.

OBJ3.3 Medium
Attempt to quantify misdetection and false alarm rates by running suf-

ficient number of simulations.

OBJ3.4 Medium
Visually represent CPs by including relevant graphs, such as run-length

versus time.

Table A.1: List of objectives and their respective priorities ordered by expected time
of completion.
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Appendix B

Probability distributions

We list the mass and density functions, means and variances of the distributions of models used

in Chapter 3 as evidenced in (Evans et al., 2011).

B.1 Poisson

The Poisson distribution is a univariate discrete distribution with:

Support (domain) 0 ≤ x <∞
Parameters intensity λ > 0

Probability function λxe(−λ)

x!

Mean λ

Variance λ

Table B.1: Parameters, mass function, mean and variance of Poisson distribution.

B.2 Gamma

The Gamma distribution is a univariate continuous distribution with:

Support (domain) 0 ≤ x <∞
Parameters scale b > 0, shape c > 0

Probability function (x
b
)c−1 e

(−x
b
)

bΓ(c)
, where Γ is the Gamma function

Mean bc

Variance b2c

Table B.2: Parameters, mass function, mean and variance of Gamma distribution.
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B.3 Multinomial

The Multinomial distribution is the multivariate generalisation of the Binomial distribu-

tion. The k-dimensional Multinomial distribution has:

Support (domain) x = (x1, . . . , xk)
T > 0

Parameters
number of trials n :=

∑k
i=1 xi, probability p = (p1, . . . , pk) with

0 < pi < 1 ∀i = 1, . . . , k and
∑k

i=1 pi = 1

Probability function n!
∏k

i=1 (
p
xi
i

xi!
)

Mean npi for dimension i = 1, . . . , k

Variance npi(1− pi) for dimension i = 1, . . . , k

Covariance −npipj between dimensions i and j with i 6= j

Table B.3: Parameters, density function, mean and variance of Multinomial distri-
bution.

B.4 Dirichlet

The Dirichlet distribution is the multivariate generalisation of the Beta distribution. The

k-dimensional Multinomial distribution has:

Support (domain) x = (x1, . . . , xk)
T > 0 with

∑k
i=1 xi ≤ 1

Parameters c = (c1, . . . , ck)
T > 0 and c0

Probability function
Γ(

∑k
i=0 ci)∏k

i=1 Γ(ci)

∏k
i=1 x

ci−1
i (1−

∑k
i=1 xi)

c0−1

Mean ci
c

for dimension i ∀i = 1, . . . , k, where c =
∑k

i=0 ci
Variance ci(c−ci)

c2(c+1)
for dimension i ∀i = 1, . . . , k, where c =

∑k
i=0 ci

Covariance

−cicj
c2(c+1)

between dimensions i and j with i 6= j ∀i, j = 1, . . . , k,

where c =
∑k

i=0 ci

Table B.4: Parameters, density function, mean and variance of Dirichlet distribu-
tion.
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Appendix C

Code

As part of this dissertation, code was written in Python 3 for the implementation of the PG

and MD models in Chapter 3. The scripts are found under the names poisson gamma.py and

multinomial dirichlet model.py for the PG and MD models, respectively. They include the

following routines:

• initialization: Initialises key data structures for storing parameters and probability

distributions.

• evaluate predictive log distribution: Returns the log densities of yt using the pre-

dictive posteriors for all possible run-lengths rt = 0, 1, . . . , t− 1.

• evaluate log prior predictive: Returns the prior log density of the predictive distri-

bution for all possible run-lengths rt = 0, 1, . . . , t− 1.

• update predictive distributions: Takes next observations yt and updates sufficient

statistics for all possible run-lengths rt = 0, 1, . . . , t− 1.

• get posterior expectation: Returns the predicted value/expectation from the current
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posteriors at time point t, for all possible run-lengths.

• get posterior variance: Returns the predicted variance from the current posteriors at

time point t, for all possible run-lengths.

• prior update: Updates the prior expectation & variance to be the posterior expectation

and variances weighted by the run-length distribution.

• prior log density: Computes the log-density of yt under the prior.

• trimmer: Prunes key quantities based on the k most probable run-lengths.

Each of these code scripts extends the ProbabilityModel class, which is an abstract class

developed by Jeremias Knoblauch. This class is called by the Detector object upon receiving

a new datum yt.
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