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Abstract

’s objective to improve the health and safety of its customers is tightly linked to

better monitoring of on-road water discharge. Given the increasing climate volatility, a probabilistic

approach is adopted to modelling on-road water discharge. This report illustrates the potential of

using a hybrid of statistical and hydrological models to better understand on-road water conditions.

The study area is a major A-road in . The lumped linear reservoir model as

well as the spatially-distributed HYMOD model are employed and discharge data is simulated using

rainfall and potential evapotranspiration data from the Climate hydrology and ecology research sup-

port system (CHESS). The same models are then treated in a Bayesian manner by assigning priors

over their tuning parameters. Parameter posteriors and marginal likelihoods are computed using a

Sequential Monte Carlo (SMC) sampler. Data fits and Bayes factors are examined to assess goodness

of fit and identify the best model, which according to the data is the linear reservoir model.

Keywords: hydrological modelling, Bayesian inference, physics-informed machine learning.
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1 Introduction

The management of key road assets that connect major cities and accommodate millions of vehicles

every day is a complicated task. It is increasingly challenging to secure the long-term environmental

resilience of that infrastructure, particularly with regards to the effects of erratic rainfall patterns on

roads. One way of easing the burden faces is to employ sophisticated data-driven hydrological

models that monitor the rainfall-runoff (discharge) on the surface of major roads/motorways. This

can constitute the basis for a real-time on-road rainfall-runoff monitoring and alert system for road

managers and users. However, the increased climate volatility observed due to climate change is

polluting the process with noise which can lead to biased estimates of water volumes. In order to

make robust inference of the volume of water (otherwise known as water discharge) accumulated on a

given road it is necessary to incorporate the uncertainty into the modelling framework.

The approach discussed in this report involves developing a hybrid modelling framework that

combines common hydrological models with statistical models to make inference of water discharge

on .

1.1 Literature review

1.1.1 Hydrological models

The vast majority of hydrological modelling studies have been focused on modelling the runoff gen-

eration and routing in river, lake or groundwater catchments (or watersheds). Not much attention

has been devoted to estimate surface water volume in roads. A study by researchers from the Royal

Institute of Technology in Sweden (Kalantari et al. 2014) attempted to use physically-based hydrolog-

ical models to identify the appropriateness of road drainage structure dimensioning. Another study

(Hollis 1988) focused on the hydrological effects of urbanisation. However, neither studies elaborated

on any procedural models that can model rainfall-runoff on road surfaces.

A common modelling approach in hydrology is to estimate the (unit) hydrograph, which is the

graph of the rate of water flow (discharge) versus time (K. J. Beven 2012, p. 29-33). The rational

method (ibid., p. 25-26) is one of the earliest methods for obtaining the peak of a hydrograph as it dates

back to the 1851. Due to its poor predictive ability more complicated models have been developed since

then. One such model is the Identification of Unit Hydrographs and Component Flows from Rainfall,

Evaporation, and Streamflow Data (IHACRES) model (Allen and Liu 2011), which is a conceptual

model (i.e. a model based on the conceptions of a hydrologist about the physical processes that govern

the modelled system) applied to humid/temperate region catchments. In addition, there are models

3



that have been applied to rivers and bridges, such as the Soil and Water Assessment tool (SWAT) (P.

W. Gassman et al. 2007) and the Hydrologic Engineering Center-River Analysis System (HEC-RAS)

(US Army Corps of Engineers 2002). The former is being used to assess the impact of land management

practices in large watersheds while the latter was used by the United States Army Corps of Engineers

in an attempt to manage the rivers, harbors, and other public works under their jurisdiction. The Soil

Moisture Accounting and Routing for Transport (SMART) model (Mockler, O’Loughlin, and Bruen

2016) is one of the latest conceptual models developed for agricultural applications. Notable models

for impervious land surfaces and streams include the Hydrological Simulation Program FORTRAN

(HSPF) (Bicknell et al. 1997), which is a FORTRAN-based program that can simulate the non-point

source pollutant loads, hydrology parameters, and aggregate water quality.

Last but not least, two important models are the linear reservoir (LR) (Zeeuw 1973) and the non-

linear storage models (NLS) (Botter et al. 2009) are widely applicable lumped models, i.e. models

that treat the catchment as a single unit (K. J. Beven 2012, p. 16). Distributed models address

the limitation of lumped models as they make predictions in space by discretising the catchment

into a finite number of elements (ibid., p. 16). Two of the most prominent distributed models are

the probability distributed model (PDM) (Moore and Clarke 1981) and the TOPMODEL (K. Beven

1997). PDM makes use of probability distribution functions to quantify the spatial variability of water

storage capacity while TOPMODEL is a topography-based model that can map the predictions back

into the catchment to allow additional evaluation of the simulations. Finally, the HYMOD model

(Boyle, Gupta, and Sorooshian 2011) is another important models that builds upon the ideas of the

PDM.

1.1.2 Uncertainty quantification

Most of the hydrology models explored in the previous section are physics-based parametric models.

There is a number of challenges arising in model calibration. First of all, parameter values are often

not known a priori (K. J. Beven 2012, p. 44). Second of all, the concept of an optimum parameter

set may be ill-founded in hydrological modelling (ibid., p. 44), which implies that optimal parameters

are not unique. For these reasons recent studies (Vrugt et al. 2003) (Ajami, Duan, and Sorooshian

2007) (Montanari and Brath 2004) have attempted to identify the sources of uncertainty in hydro-

logical models. Novel techniques in hydrology include a hydrological data assimilation approach for

estimating model parameters and state variables using particle filters (Moradkhani et al. 2005) and

the introduction of a Bayesian framework for model calibration and validation (Kavetski, Franks,

and Kuczera 2003). Another notable contribution use of a multimodel Bayesian framework (Ajami,
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Duan, and Sorooshian 2007) that attempted to distinguish between parameter, input, and structural

uncertainties.

Since its introduction in hydrological modelling, Bayesian inference has proved to be a suitable

way of managing the different sources of uncertainty in hydrological models. Due to the intractable

nature of many physics-based hydrological models, the computation of posterior distributions is usually

facilitated by Markov chain Monte Carlo (MCMC) sampling techniques. The use of MCMC as well

as variants of Metropolis-Hastings sampling methods has been also been popularised in hydrology

(Kuczera and Parent 1998) (Ajami, Duan, and Sorooshian 2007).

1.2 Aims

This projects aims to:

1. Motivate the application of common rainfall-runoff models to roads

2. Identify the potential of using statistical and physics-based (hybrid) approaches to rainfall-runoff

modelling

3. Demonstrate the versatility of Bayesian methods of uncertainty quantification in rainfall-runoff

modelling

As demonstrated in the proposal brief, this research project is perfectly aligned with HE’s key perfor-

mance indicators (KPIs) with regards to health & safety and road maintenance.

1.3 Scope

Regarding the experimental procedure, two hydrological models (LR and HYMOD) are employed and

discharge data is simulated for each for these models. Then, the same models are treated in a Bayesian

manner and inference is made on their parameter posteriors based on each simulation dataset, which

results in nine models (two model parametrisations for each model structure). This is achieved by

assigning prior distributions over the parameters. Posterior inference is made using Sequential Monte

Carlo (SMC) sampling and marginal likelihoods are computed as a by-product. Finally, Bayes factors

and a 2× 2 marginal likelihood matrix are computed for model comparison.

1.4 Study area

The road of interest (Figure 1) was selected from

dataset which is available on . It is a two-way single carriageway A-
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road located in north-west England whose surface area is approximately 16000 m2. The road number

is A590 and its reference is 210000/NRP/A590/007. According to the 25 m digital elevation model,

there are no significant slope variations throughout the road and therefore the road is treated as a flat

surface.

In terms of data requirements, the two hydrological models make use of monthly rainfall (in

mm/day) and potential evapotranspiration data (in mm/day) from the Climate hydrology and ecology

research support system potential evapotranspiration dataset (1961-2012), which is available at 1km

resolution. Also, could not provide on-road road water discharge data (mm3/day).

In order to avoiding treating the road as an ungauged catchment (i.e. a catchment that lacks discharge

sensors), discharge data was simulated using the two rainfall-runoff models. Finally, no water drainage

data (location and surface area of drainage systems) was made available by . This is

the case because the does not

include precise area measurements of drainage systems.

Figure 1: 3D visualisation of road landscape in QGIS. Road is shown in red.

2 Modelling framework

This section outlines the rainfall-runoff models employed to simulate discharge data and make inference

on it. In hydrology terms, these models will simulate a hydrograph which will then be mimiced by

the mass-balance equations of each model with the aid of statistical machinery.
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2.1 Rainfall-runoff models

2.1.1 Linear reservoir model

Figure 2: Linear reservoir

model pictorial representation.

The linear reservoir model (Zeeuw 1973) shown in Figure 2 is widely

used in rainfall-runoff modelling. Water inflows on the surface of the

road at any time t are defined as the difference between precipita-

tion P (t) and evapotranspiration E(t), called net rainfall R(t). Note

that transpiration due to plants and trees may not be relevant when

measuring road surface discharge. However, in this case it will be

assumed that water is absorbed by the surrounding flora of the road

in Figure 1. Another implicit assumption made here is that water

drainage is assumed to be negligible, which is an unrealistic assump-

tion for most A-roads. The lumped nature of the model implies that

there is no spatial variability of discharge along the road, which may

also be an unrealistic assumption. However, lack of precise road slope

data renders a more sophisticated application of the linear reservoir

model hard.

The model is assumed to have a constant first-order storage coefficient K (measured in time

units), which reflects how quickly the reservoir drains; a smaller value indicates more rapid outflow.

It combines continuity and storage-discharge equations, which yields an ordinary differential equation

that describes outflow from each reservoir (ibid.). The continuity (or water-balance) equation for tank

models is:

dS(t)

dt
= R(t)−Q(t), (1)

where Q(t) is the discharge (i.e. volumetric water flow rate) at time t, S(t) is the water level at

time t. Equation 1 indicates that the change in storage over time is the difference between inflows and

outflows. The storage-discharge relationship (flow equation) is:

Q(t) =
S(t)

K
(2)

Combining equations 1 and 2 yields

K
Q(t)

dt
= R(t)−Q(t), (3)
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which admits the following solution:

Q(t) = R(t)× (1− e−t/K).

Since discharge Q(t) is a volumetric quantity and is therefore lower-bounded by zero, R(t) =

max(0, P (t)− E(t)) holds for the above equation.

Provided the value of K is known, the total hydrograph can be obtained by successively computing

the runoff at the each time interval. Otherwise, K can be determined from a data record of rainfall

and runoff, which is not available in this application of the model. In the case when the response

factor K can be determined from the characteristics of the watershed, the reservoir can be used as

a deterministic model. The fact that K is not known a priori motivates the need for a Bayesian

treatment of the linear reservoir model.

2.1.2 HYMOD model

Figure 3: Distribution of soil water storage, surface

runoff and stored volume in the HYMOD model

(Montanari 2019).

The Hymod model (Boyle, Gupta, and Sorooshian

2011) is increasingly adopted for its capability of

providing a good fit in several practical appli-

cations. The fundamental assumption it makes

is that each point i in the catchment is charac-

terised by a local value of soil water storage Ci,

which varies from 0 in the impervious areas up

to a maximum value Cmax in the most permeable

location of the catchment. Ci is assumed to be

a continuous random variable, so that for an as-

signed value C∗ there is an associated probability

for a random location j characterised by Cj less

than, or equal to, C∗. Such probability may be interpreted as the fraction F (C∗) of the catchment

area where Cj ≤ C∗. In this case, F is the probability distribution of C∗. The above probability

distribution is written as

F (C∗) = 1−
(

1− C∗
Cmax

)βk
(4)

for 0 ≤ C∗ ≤ Cmax.
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In the case of impervious road surfaces, it may be intuitive to set Ci = 0 for every location i.

However, roads have drainage systems in place and the road topography creates local ‘storage units’.

Therefore, the parameter Cmax may be interpreted as the maximum storage capacity of say a drainage

system on the side of the road. In that way the HYMOD model harnesses the power of a spatially

distributed hydrological model and allows for drainage to be taken into account without explicitly

using drainage data.

In equation 4, βk is a parameter which controls the spatial variability of the water storage capacity.

It can be verified by numerical simulation that βk = 0 implies that the water storage capacity is

constant over the catchment and equal to Cmax; βk = 1 implies that water storage is linearly varying

from 0 to Cmax; βk →∞ implies that water storage tends to the zero, i.e. the road is impervious with

no drainage systems in place.

Assuming that a storm event occurs over the road and let C(t) be the time-varying water depth

stored in the unsaturated locations of the catchment. Ignoring water losses, such as evapotranspiration,

C(t) is equal to the rainfall amount from the beginning of the event. Assuming that the shape of the

probability distribution in equation 4, now expressed in terms of C(t), is the one reported in Figure

3, it can be easily shown that the water volume stored in the catchment at time t is given by

W (t) = C(t)−

[∫ C(t)

0
F (x)dx

]
(5)

The integral on the right hand side of the above equation is the area below the red line in Figure 3.

Each area increment is given by the product of rainfall at each time step and the fraction F (C(t)) of

saturated area at that time, which is equal to the surface runoff. Conversely, the area above the curve

gives the global storage W (t) into the catchment as a weighted average of C(t). The movement of

surface runoff and water storage is depicted in Figure 4. After saturation, the storage in the catchment

reaches a plateau and the contribution of surface runoff is given by the excess rainfall, which is the

fraction of saturated area.

Evaluating the integral in equation 5 results in the water volume stored in the catchment being

equal to

W (t) =
Cmax
βk + 1

[
1−

[
1− C(t)

Cmax

]βk+1
]

(6)

Inverting the above equation yields

C(t) = Cmax

[
1−

(
1−W (t)

βk + 1

Cmax

) 1
βk+1

]
(7)
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An upper bound for Wmax can be derived by setting C(t) = Cmax ∀t ∈ {1, . . . , T}:

Wmax =
Cmax
βk + 1

The above equations allow for an easy application of the Hymod model through a numerical

simulation, that is usually carried out by adopting a time step ∆t that is equal to observational

time step of rainfall and water flow (one day in this case). At any given time t, the value of C(t)

is known to be equal to the cumulative rainfall depth from the beginning of the event at time t.

Therefore, W (t) can be easily computed as well by using the above relationships. At time t + 1,

C(t + 1) = C(t) + P (t), where P (t) is rainfall, under the conditions that C(t + 1) = Cmax and

C(t) + P (t) > Cmax. Therefore, a first contribution to surface runoff can be computed through the

relationship ER1(t) = max(C(t) + P (t)− Cmax, 0).

A second contribution to the surface runoff is made by the water volume that cannot be absorbed

by the catchment because part of the catchment area got saturated in the last time step. This

contribution is given by ER2(t) = (C(t + 1)− C(t)) − (W (t + 1)−W (t)). The total contribution to

the surface runoff during [t, t+ 1] is therefore given by the sum of ER1(t) and ER2(t).

At this stage, the water losses are computed through the relationship

E(t) =

(
1−

Cmax
βk+1 −W (t)

Cmax
βk+1

)
Ep(t), (8)

where Ep(t) is the potential evapotranspiration at time t provided in the raw data. Then, the

water storage at time t+ 1 is given by W (t+ 1) = W (t)− Ep(t). Note the actual evapotranspiration

is subtracted from the stored water volume after ER1(t) and ER2(t) are computed.

The total contribution ER(t) = ER1(t) + ER2(t) to the surface runoff is then divided into 2

components: αER2(t) + ER1(t) which represent the fast flow and (1 − α)ER2(t) which is the slow

flow. Fast flow is propagated through a cascade (series) of linear reservoirs (nreservoirs of them) with

the same constant coefficient kq, while slow flow is instead propagated through a single linear reservoir

with parameter ks. Let Qf (t) and Qs(t) be the discharges from the fast and slow flows, respectively.

Then, the total discharge is equal to Q(t) = Qf (t) +Qs(t).

The process above is then repeated for each time step up to time T and therefore the computational

complexity of simulating a discharge time series is O(T ) given that parameters Cmax, βk, α, kq and

ks are known.
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Figure 4: A schematic representation of the Hymod model.

2.1.3 Simulations

The models outlined in the two previous sections were used to simulate discharge data based on

the raw rainfall and evapotransporitation data. The simulations were coded in Python using the

scipy.integrate package. To avoid getting nonsensical discharge values, net rainfall (rainfall minus

potential evapotranspiration) was lower bounded by zero. Tables 1 and 2 show the true parameter

values for the LR and HYMOD models. True parameters were chosen based on literature (Moore

and Clarke 1981). The boundary conditions Q(0) and W (0) were assumed to be known a priori and

were not tuned. Figure 5 shows the resulting simulated monthly discharge values for both models

as well as the net rainfall patterns. It seems that despite the nature of the models (lumped versus

distributed) and the model complexities (two versus six tuning parameters) the two simulations are

highly correlated. This is expected as both models leverage the same rainfall and evapotranspiration

data.

Parameter Value

Q(0) 0.01

k 0.8

σ 0.5

Table 1: Linear reservoir model simulation parameters.
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Parameter Value

Q(0) 0.01

W (0) 0.01

Cmax 300

βk 0.3

α 0.4

kslow 1.5

kfast 1.1

nreservoirs 3

σ 0.5

Table 2: HYMOD model simulation parameters.

Figure 5: Monthly discharge simulations based on LR and HYMOD models shown in conjunction with

net rainfall patterns.

2.2 Bayesian inference

Let a typical hydrological model M be represented as follows:

Y = M(X̃,θ),

where Y ∈ RT×N represents the response matrix of the catchment (i.e. discharge). The (non-

)linear hydrological model is denoted by M(·) while θ ∈ Rp corresponds to the set of model parameters,
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and X̃ the matrix of observed (input) covariates (rainfall and evapotranspiration). In practise, the Y

process is noisy and is therefore represented with additive residuals as follows:

Ỹ = M(X̃,θ) + ε(θ),

where Ỹ is the set of noisy experimental observations observed at T experimental time points for

the N states (for both LR and HYMOD models N = 1). The additive noise ε(θ) in the process is

independent and identically distributed Gaussian noise with mean zero and constant unknown variance

σ2.

In a Bayesian framework θ is assumed to be a random variable with an associated probability

distribution. A priori to observing any discharge data, the beliefs about the parameter values are

expressed in the prior distribution π(θ). Therefore, by Bayes’ rule

p(θ|X̃, Ỹ ) =
p(Ỹ |X̃,θ)π(θ)∫
p(Ỹ |X̃,θ)π(θ)dθ

,

where p(Ỹ |X̃,θ) is referred to the likelihood of the response given the covariates and parameters,

p(θ|X̃, Ỹ ) is the parameter posterior distribution and
∫
p(Ỹ |X̃,θ)π(θ)dθ is the marginal likelihood

or evidence of model M (also denoted as p(Ỹ |M)).

Due to the intractability of the parameter posterior and marginal likelihood, Sequential Monte

Carlo (SMC) was employed (Kantas et al. n.d.). Compared to other sampling techniques, SMC

facilitates the computation of the marginal likelihood with some extra computational cost. By selecting

an initial population of particles that sample from the prior and estimate the posterior distributions,

the SMC sampler will recursively update that population based on its posterior mass to generate good

posterior estimates. Given the nature of this particular application, there is no need for a convergence

criterion as the true model parameters are known.

The linear reservoir model has two tuning parameters: k and σ. The priors over these two param-

eters are

k ∼ Uniform(0.01, 5)

σ ∼ Gamma(2, 4).

The HYMOD model has six tuning parameters: cmax, α, βk, kslow, kfast and σ. The priors over these

13



six parameters are

cmax ∼ Uniform(1, 400)

α ∼ Beta(2, 3)

βk ∼ Gamma(2, 6)

kslow ∼ Uniform(0.01, 5)

kfast ∼ Uniform(0.01, 2)

σ ∼ Gamma(2, 4).

For both models the likelihood of the data is assumed to be

p(Ỹ |X̃,θ) ∼ Normal(X(X̃,θ), σ2),

where X(X̃,θ) is the ODE solution to the X̃ given the choice of θ.

For model comparison purposes, the Bayes factor is going to be computed. Assuming the prior

over models is uniform, the Bayes factor is equal to the likelihood ratio

P (Ỹ |MLR)

P (Ỹ |MHYMOD)
=

P (MLR|Ỹ )

P (MHYMOD|Ỹ )
,

which is equal to the ratio of marginal likelihoods. If the ratio is greater than one, the evidence

supports that the model in the numerator is better than model in the denominator.

3 Experimental results

This section illustrates the results of training the two models on two simulated datasets. Figures 7

and 8 depict the estimated parameter posterior distribution of the LR and HYMOD models trained

on their simulated datasets.

3.1 Linear reservoir model

According to Figure 7, the posterior of k is approximately Gaussian while the σ posterior is closer

to a Gamma distribution (which is also the prior on σ). The posterior sample mean is very close

to the true value for both values, which is indicative of convergence. The posterior predictive mean

and 95% interval shown in Figure 6 illustrates a good data fit. It is clear that the LR model is more

uncertain at the peaks of discharge data than it is at the troughs. This is because the distribution of

Q is positively skewed.
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Figure 6: Linear reservoir model posterior predictive distribution of monthly discharge simulations.

(a) LR model k posterior distribution. (b) LR model σ posterior distribution.

Figure 7: Linear reservoir model parameter posterior distributions.

3.2 HYMOD model

The increased complexity of the HYMOD model (seven tuning parameters) necessitated a larger par-

ticle population size for convergence of the posteriors to be achieved. Figures 8e and 8d show that the

posterior means of βk,kfast,kslow, and σ are very close to their true values. The posterior distributions

of kslow, and σ are approximately Gaussian and Gamma, respectively. Also, the distributions of βk

and kfast resemble multimodal-like distributions from the exponential family. Last but not least, the

distributions of cmax and kfast seem to be bimodal. The multimodality of these distributions may

be attributed to what hydrologists refer to as equifinality (K. J. Beven 2012, p. 44-45). This concept

captures the idea that there may be more than one equally valid parameter sets and model structures.
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(a) HYMOD model cmax posterior distribution. (b) HYMOD model α posterior distribution.

(c) HYMOD model βk posterior distribution. (d) HYMOD model kfast posterior distribution.

(e) HYMOD model kslow posterior distribution. (f) HYMOD model σ posterior distribution.

Figure 8: HYMOD model parameter posterior distributions.

Also, the fact that the number of data points is 24 intuitively provides room for multiple ‘optimal’

parameter configurations. Therefore, posterior convergence is also achieved for the HYMOD model.

This belief is reinforced by the goodness of fit shown in Figure 9.
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Figure 9: HYMOD model posterior predictive distribution of monthly discharge simulations.

3.3 Model comparison

The two models appear to have a similar data fit as shown in Figures 6 and 9. The marginal likelihoods

of the LR model is however higher than the HYMOD model’s according to Table 3a. Thus, the

additional complexity of the HYMOD model did not provide a better explanation of the data. The

Bayes factor of 1.3 implies that there is sufficient evidence that the LR model is better than the

HYMOD model when they are both applied on data generated from the same model. As a result, the

lumped hydrological model appears to be more powerful than the spatially-distributed model when

tested against the simulated discharge datasets. In the two cases when one of the two models is

misspecified it is evident that the misspecified model is penalised as expected (see Bayes factors along

the diagonal of Table 3b). The Bayes factor of 5.0 implies that the LR model is better at describing

HYMOD-simulated data than the HYMOD model is at modelling LR-simulated data. Hence, the

evidence suggests that the LR model is slightly more versatile than the HYMOD model.

4 Conclusions and recommendations

’s management of critical road infrastructure is a demanding task that necessitates

the use of an evidence-based approach. This report proposes a data-driven approach of assessing the

impact of rainfall on the Strategic Road Network. The suggested modelling approach of estimat-

ing on-road water accumulation provides a basis for future on-site monitoring tools that will help
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model

LR HYMOD
d

at
a LR 1.2 4× 10−4

HYMOD 2× 10−3 0.9

(a) Marginal likelihoods of LR and HYMOD models

trained on simulation data.

j

LR HYMOD

i
LR 3000 5.0

HYMOD 1.3 0.002

(b) Bayes factors
P (Ỹj |MLR)

P (Ỹi|MHY MOD)
for LR and HYMOD

models.

Table 3: Model comparison of LR and HYMOD models.

better maintain its infrastructure while also providing better signal about road

conditions to its customers. By harnessing the power of statistical and hydrological models, many

of the limitations encountered in traditional hydrological modelling are addressed, such as parameter

uncertainty. The probabilistic approach adopted allows to make robust inference

of water discharge on its roads. The two different types of models employed (lumped and distributed)

depict two common approaches in traditional hydrological modelling. The estimated posterior distri-

butions of model parameters indicate convergence of the particles to the true posterior for both the LR

and HYMOD models. However, the convergence is more apparent for the LR model. For the HYMOD

model, the significant discrepancies observed between the sample mean and true values of two model

parameters can be attributed to equifinality of hydrological models. Given the small dataset size and

the goodness of fit of the HYMOD model as evidenced by the posterior predictive and the marginal

likelihood, it can be argued that convergence was also achieved for the HYMOD model. In terms of

model comparison, the Bayes factors indicate that the LR is a more powerful and versatile model than

the HYMOD model as the additional complexity of the HYMOD model does not explain more aspects

of the catchment data.

The existing modelling framework can be improved by using a larger dataset over a wider study

area (i.e. more than one roads) to verify the findings derived from this research. A holistic approach

would also require real discharge data and precise drainage data. More advanced hydrological models

with more climatic and GIS features can also be employed to assess the effect of different model

structures on predictive performance. Last but not least, catchment characteristics are not often

best captured by a single hydrological model. For that reason, this framework can be extended to

incorporate multiple Bayesian models when making inference.
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Appendices

A Linear reservoir model Bayesian inference

1 import theano

2 from theano import ∗

3 import theano . t enso r as t t

4 from theano . compile . ops import as op

5 from models . L inearReservo irModel import LinearReservo irModel as LRM

6 from tqdm import tqdm

7 import pandas as pd

8 import numpy as np

9 import pymc3 as pm

10 import j s on

11

12 ’ ’ ’ Import s imu la ted data ’ ’ ’

13

14 # . . .

15

16 ’ ’ ’ Compute p o s t e r i o r samples ’ ’ ’

17

18 # I n s t a n t i a t e l i n e a r r e s e r v o i r s t a t i s t i c a l model

19 lrm = LRM( nr , t r u e a r g s )

20 @as op ( i t y p e s =[ t t . d s c a l a r ] , otypes =[ t t . dmatrix ] )

21 def th forward model ( param1 ) :

22 p a r a m e t e r l i s t = [ param1 ]

23 t h s t a t e s = lrm . s imulate ( p a r a m e t e r l i s t , t r u e a r g s . fa tconv )

24 return t h s t a t e s

25

26 # I n i t i a l i s e dataframe to s t o r e parameter p o s t e r i o r s

27 # Loop over s imu la ted d a t a s e t s and compute marginal

28 for mi in tqdm( mode l d i s charge s . keys ( ) ) :

29 print ( f ’LRM p o s t e r i o r sample gene ra t i on us ing {mi} data ’ )
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30 with pm. Model ( ) as LR model :

31

32 # Priors f o r unknown model parameters

33 k = pm. Uniform ( ’ k ’ , lower =0.01 , upper=args . kmax)

34

35 # Priors f o r i n i t i a l c o n d i t i o n s and no i se l e v e l

36 sigma = pm.Gamma( ’ sigma ’ , alpha=args . alpha , beta=args . beta )

37

38 # Compute forward model

39 forward = th forward model ( k )

40

41 # Compute l i k e l i h o o d

42 Q obs = pm. Normal ( ’ Q obs ’ , mu=forward , sigma=sigma , observed=

mode l d i s charge s [ mi ] )

43

44 # Fix random seed

45 np . random . seed ( args . randomseed )

46

47 # I n i t i a l p o i n t s f o r each o f the chains

48 s tartsmc = [{ ’ k ’ : np . random . uniform ( 0 . 0 1 , args . kmax , 1 ) } for

in range ( args . nchains ) ]

49

50 # Sample p o s t e r i o r

51 trace LR = pm. sample ( args . nsamples , p rog re s sbar=True , s t a r t=

startsmc , s tep=pm.SMC( ) )

52

53 # Compute marginal l i k e l i h o o d

54 ml = LR model . m a r g i n a l l i k e l i h o o d #−np . l o g ( LR model .

m a r g i n a l l i k e l i h o o d )

55 print ( ’ Marginal L ike l i hood : ’ ,ml )
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B HYMOD model Bayesian inference

1 import theano

2 from theano import ∗

3 import theano . t enso r as t t

4 from theano . compile . ops import as op

5 from models . HymodModel import HymodModel as HYMOD

6 from tqdm import tqdm

7 import pandas as pd

8 import numpy as np

9 import pymc3 as pm

10 import j s on

11

12 ’ ’ ’ Import s imu la ted data ’ ’ ’

13

14 # . . .

15

16 ’ ’ ’ Compute p o s t e r i o r samples ’ ’ ’

17

18 # I n s t a n t i a t e l i n e a r r e s e r v o i r s t a t i s t i c a l model

19 hymod = HYMOD( rn , et , t r u e a r g s )

20 @as op ( i t y p e s =[ t t . dsca la r , t t . d sca la r , t t . d sca la r , t t . d sca la r , t t . d s c a l a r

] , otypes =[ t t . dmatrix ] )

21 def th forward model ( param1 , param2 , param3 , param4 , param5 ) :

22 p a r a m e t e r l i s t = [ param1 , param2 , param3 , param4 , param5 ]

23 t h s t a t e s = hymod . s imulate ( p a r a m e t e r l i s t , t r u e a r g s )

24 return t h s t a t e s

25

26 # Loop over s imu la ted d a t a s e t s and compute marginal

27 for mi in tqdm( mode l d i s charge s . keys ( ) ) :

28 with pm. Model ( ) as HYMOD model :

29 # Priors f o r unknown model parameters
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30 cmax = pm. Uniform ( ’ cmax ’ , lower =1.0 , upper=args . c max , trans form

=None )

31 k f a s t = pm. Uniform ( ’ k f a s t ’ , lower =0.01 , upper=args . kfast max ,

trans form=None )

32 kslow = pm. Uniform ( ’ kslow ’ , lower =0.01 , upper=args . kslow max ,

trans form=None )

33 betak = pm.Gamma( ’ betak ’ , alpha=args . betak alpha , beta=args .

betak beta , trans form=None )

34 a l f a = pm. Beta ( ’ a l f a ’ , alpha=args . a l f a a l p h a , beta=args .

a l f a b e t a , trans form=None )

35

36 # Priors f o r i n i t i a l c o n d i t i o n s and no i se l e v e l

37 sigma = pm.Gamma( ’ sigma ’ , alpha=args . s igma alpha , beta=args .

s igma beta )

38

39 # Compute forward model

40 forward = th forward model (cmax , betak , a l f a , k fa s t , kslow )

41

42 # Compute l i k e l i h o o d

43 Q obs = pm. Normal ( ’ Q obs ’ , mu=forward , sigma=sigma , observed=

mode l d i s charge s [ mi ] )

44

45 # Sample p o s t e r i o r

46 trace HYMOD = pm. sample ( args . nsamples , p rog re s sbar=True , s tep

=pm.SMC( ) , random seed=args . randomseed )

47

48 # Compute n e g a t i v e marginal l i k e l i h o o d

49 ml = HYMOD model . m a r g i n a l l i k e l i h o o d #−np . l o g (HYMOD model .

m a r g i n a l l i k e l i h o o d )

50 print ( ’ Marginal L ike l i hood : ’ ,ml )
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