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Abstract

Modelling of evolution of urban travel demand is fundamental for urban planners and policy

makers to assess the spatial demand for transportation capacity and decide on appropriate

interventions. We follow the approach of (Ellam et al., 2018) and introduce a novel application

of spatial interaction models and a mathematical evolution of their dynamics to urban travel

demand. We exploit economic structure characteristics (e.g. employment) to inform travel de-

mand between a set of origin and destination locations. The economic structural variables are

described by a potential function defined in terms of utility and cost functions. We also use a

system of stochastic di↵erential equations to model temporal travel demand evolution. We cal-

ibrate our model using a Bayesian framework that formally incorporates uncertainty involved

in the process due to random noise or unexplained events and propagates it into parameter

inference. We apply our model to London’s 2001 commuter flow data and find that we can ad-

equately reconstruct the flow matrix only through the use of employment data as a latent force

driving travel demand. We compute a Euclidean distance-based and transportation network-

based cost matrices and find that the latter is marginally better at explaining travel demand.

Finally, we overcome computational challenges arising from a doubly intractable posterior by

applying appropriate Markov Chain Monte Carlo schemes for various noise regimes.

Keywords: stochastic travel demand modelling, spatial interaction modelling, origin-

destination estimation, Bayesian inverse problems, stochastic di↵erential equations, urban

transportation
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Nomenclature

In this thesis, we adopt standard notation and denote multidimensional objects in bold letters,

say x. Lowercase letters are used to denote scalars or vectors (x or x, respectively) while

capital letters denote matrices or random variables (the di↵erence between the two is made

clear in the context in which the mathematical objects are provided). The i-th element of a

vector x is written as xi while the (i, j)-th element of a matrix is indexed as Xij. Additional

explanations on abbreviations and notation is provided below.

Table 1: Acronyms and their corresponding descriptions.

Acronym Description

AIS Annealed importance sampling

DCM Discrete choice model

HMC Hamiltonian Monte Carlo

i.i.d. Independent and identically distributed

L-BFGS Limited memory Broyden-Flether-Goldfarb-Shanno

MCMC Markov Chain Monte Carlo

MAP Maximum a posteriori

MLE Maximum likelihood estimate

n.c. Normalising constant

OD Origin-destination

ODE Ordinary di↵erential equation

pdf Probability density function

p.f. Potential function

PR Poisson regression

PT Parallel tempering

SDE Stochastic di↵erential equation
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SIM Spatial interaction model

SRMSE Standardised root mean square error

Table 2: Commonly used notation and its corresponding description.

Symbol Description

Oi Origin supply from origin i

Dj Destination demand from destination j

Wj Latent destination size of destination j

Xj Log latent destination size of destination j

cij Cost of travelling from origin i to destination j

Tij Flow from origin i to destination j

Uij Utility function of travelling from origin i to destination j

N Number of origin locations

M Number of destination locations

↵ Attractiveness parameter of spatial interaction model

� Inconvenience of travel parameter of spatial interaction model

✏ Responsiveness/scaling parameter

� Standard deviation of observation noise or Lagrange multiplier

� Standard deviation

� = 1
2�2 Inverse temperature parameter of the SIM

 Job competitiveness (number of people per unit number of jobs) parameter

� additional utility parameter

✓ = (↵, �) Parameter vector of the SIM

⇠ Gumbel distributed random variable

⇢1 Stationary/equilibrium distribution of the Harris-Wilson SDE

V✓(·) Potential function for given parameter choice

J Jacobian matrix

H Hessian matrix
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Ck(S) Set of k times continuously di↵erentiable functions in S

C(p) Cost constraint evaluated for a choice of parameter p

H Shannon’s entropy function

L Lagrange multiplier objective function

O(·) Big Oh notation for space and computational complexity

Z Normalising constant of Boltzmann-Gibbs measure

E[·] Expectation

�(·) Gamma function

RM M -dimensional plane of real numbers

RM
>0 positive M -dimensional plane of real numbers

P Probability or probability mass

⇠ Distributed as

8 For all

9 There exists

|| ‘Given’. Used to denote conditionality

1 Infinity
R

Integral

@ Partial derivative

d Ordinary derivative

r Gradient of multidimensional object

� Laplace operator of multidimensional object

log Natural logarithm

lim Limit

lim inf Limit of infimum of a set
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Chapter 1

Introduction

Transportation systems are a critical piece of infrastructure in any urban environment. They

can stimulate economic growth by boosting the productivity of supply chains and provide

access to people, goods and services. The UK Government is planning to spend around £90

billion on transport infrastructure in the next five years to accommodate some of the growing

demand for travel (Marsden et al., 2018). In order for such investment to be impactful, it has

to be targeted to communities who need it the most. One way of ensuring that appropriate

investment decisions are made is to use a fine-grained view of travel demand updated on a

frequent basis. Travel demand has been increased due to urbanisation, demographic change,

and economic prosperity. At the same time, environmental restrictions on emissions imposed

through legislation are likely to decelerate travel demand growth at least through certain modes

of transport (e.g. single-occupancy cars).

Robust and scalable travel demand evolution modelling can therefore provide a useful

decision making tool to urban planners and policy makers. A clear view of spatially distributed

travel demand can unlock opportunities for governments to invest in building new or upgrading

existing infrastructure to accommodate the needs of its citizens as well as increase availability

of various modes of transport (e.g. schedule more frequent journeys from/to a given station).

Purely increasing supply without precise knowledge of the expected demand can be a poor

strategy as doing so is costly and can lead to vicious cycles of reasoning as the level of demand

is influenced by the level of infrastructure supply (Kim and Oleson, 2007). Alternatively,

localised intervention policies can be devised to accommodate the anticipated demand while

relieving congestion and reducing emissions (e.g. introducing congestion charges). These

policies can have profound impacts to social and economic development of certain regions and
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therefore they have to be proposed after careful assessment of the risks involved. This type of

assessment can be facilitated by modelling frameworks that account for known and unknown

uncertainties.

1.1 Related work

Figure 1.1: The four step travel demand fore-

casting modelling framework.

In transportation planning and forecasting

literature, the most-adopted framework of

travel demand modelling is the four step

model illustrated in Figure 1.1 or its variants.

This framework treats the transportation net-

work as a set of origins and destinations in-

between which there is a flow of people. It

consists of four steps executed iteratively un-

til ‘convergence’ is reached. The first step

is trip generation, which estimates the num-

ber of trips generated at each origin or desti-

nation. The second step is trip distribution,

whose output is the matching of origins to

destinations with an associated flow. What follows is modal split, which separates flows by

mode of transport and finally trip assignment, which assigns a route of transport people use

to reach their desired destinations.

According to Great Britain’s 2019 transport statistics there were “8.3 billion passenger jour-

neys on public transport vehicles in 2018/19” (Department for Transport, 2019). There are

broadly two ways of modelling such a large scale problem in the context of the four step trans-

portation modelling framework. One is to adopt a microscopic view that examines decisions

being made on an individual basis and another is to consider a macroscopic view of decisions

being made on a more coarse level. Naturally, microscopic behaviour can be aggregated to

derive macroscopic patterns.
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Discrete choice models (DCM) is an important class of econometric models used to describe

individual (agent) behaviour defined by a collection of mutually exclusive, exhaustive and

finite set choices (Train, 2002, p.3, 16). The underlying assumption is that the continuum

of choices an individual can make can be discretised with a small loss of information, which

relies on e↵ective partitioning of the choice space. The choice model is defined in terms of a

random utility function, which allows for a probabilistic treatment of the problem. A widely

accepted choice for the underlying probability distributions in econometric literature is the

multinomial logit model (McFadden et al., 1973). This model su↵ers from its independent

noise assumption, which is unrealistic in scenarios when choices made at time t are dependent

on choices made at time t � k. Another example where this assumption fails is when there

are common unobserved (random) factors a↵ecting multiple choices (Train, 2002, p.23). For

instance, an individual may dislike the use of the tube because they prefer avoiding public

transport, which implies that the random e↵ects of choice of mode are correlated for that

individual. The generalised extreme value model has been proposed to alleviate the impact of

the independence assumption. These models are based on the generalisation of the extreme

value distribution and account for dependencies in the error structure (Small, 1994). Another

popular choice of a more flexible DCM is the generalised random utility model (Walker and

M. Ben-Akiva, 2002) that also allows for flexible error structures by introducing latent choice

sets.

In the context of the four-step travel demand modelling framework, DCMs have been

applied on trip, tour and activity-based approaches, the most commonly accepted of which

is the last. Activity-based approaches model the number, purpose and sequence of time-

ordered activities agents make while maximising their expected utility every time a decision

is made (M. E. Ben-Akiva and Bowman, 1998). As a result, activity-based models generate a

much larger choice set, which makes steps 2-4 in Figure 1.1 computationally intensive. DCMs

also su↵er from spatio-temporal aggregation biases (Baltas and Doyle, 2001) induced from

aggregating individual choice over a large population. This bias is amplified if the independent

error and/or choice set assumptions are violated. Moreover, parameter calibration of DCMs

requires a large volume of origin-destination (OD) matrix (i.e. flow) data often available on
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an individual basis (e.g. travel diaries), which is sensitive and not open-access and/or readily

available. Unlike DCMs, conjoint preference and choice models rely on experimental design

data for parameter calibration. However, these models do not overcome the problem of city-

wide flow data availability and can introduce additional approximation errors.

We also note that sequentially and separately executing the four steps in Figure 1.1 may

be unrealistic. The order of execution ignores the dynamic evolution of travel demand and a

concurrent execution of some of these steps may be more represenative and e�cient. Also, the

evolution of travel demand is monitored by iteratively running the four steps until ‘convergence’

is achieved. Although this approach provides a temporal view of travel demand, it entails the

computational costs of rerunning a computational cumbersome procedure multiple times, which

is exacerbated if the equilibrium characteristics are unknown. Therefore, the conventional four

step framework does not constitute a single unifying approach to travel demand modelling

(Mladenovic and Trifunovic, 2014). Despite the fact that DMCs are interpretable due to the

intuitive nature of the utility-maximising argument, their aforementioned shortcomings limits

their scalability potential. Therefore, they cannot make a compelling case as a candidate

decision making tool used by policy makers and urban planners.

A class of models that overcomes some of the shortcomings of disaggregate DCMs are

the aggregated spatial interaction models (SIMs) first introduced by (A.G. Wilson, 1967).

SIMs assume that flows of people are a result of production e↵ects from origin locations,

attraction e↵ects from destination locations and the (in)convenience of travel between the

two. These e↵ects are described by the gravity model. Flow estimation is achieved through

statistical optimisation procedures that are entropy-maximising or information-minimising in

information theory terms. The theory developed in (Harris and A. G. Wilson, 1978) links the

equilibrium position of the evolution of production e↵ects to an extension of the Lotka-Volterra

ordinary di↵erential equations (ODEs) known as the Harris and Wilson model. The analogy

arises from the fact that the production sizes (species populations) are competing for the same

finite origin supplies (resources). Flows can be expressed in terms of urban demographic and

economic features, such as population and employment data, and spatial interaction. However,

the Harris and Wilson model is deterministic whose equilibrium is determined by its initial
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condition and the discontinuities induced in the ODE due to small parameter changes (Dearden

and Alan Wilson, 2011). The novel work of (Ellam et al., 2018) makes a stochastic treatment

of the Harris and Wilson model by formulating a well-defined set of stochastic di↵erential

equations (SDEs) to account for uncertainty arising from the dynamic nature of urban systems.

1.2 Current approach

We extend the work of (Ellam et al., 2018) by applying the aggregated SIM and system of SDEs

to travel demand and its evolution. The singly constrained SIM is well-posed for travel demand

models of economic structure (Batten and Boyce, 1987) as it is often the case that the supply

of people (population) at each origin is routinely available whereas the demand for destinations

is unknown. Travel demand for a particular destination is driven by socio-economic features

such as job availability whose inference is easier than that of travel demand. The aggregated

SIM avoids aggregation biases and can be calibrated without flow data. By modelling the

stochastic evolution of job availability (and therefore travel demand) in a unified framework

allows us to avoid iteratively updating the four-step model and therefore achieve significant

computational savings. The reconstructed OD matrix can also be updated e�ciently every

time the latent posterior is updated.

Moreover, the SDEs’ drift functions are defined as the gradient flow of a potential function

which in turn is a function of the travel demand and destination job availability. The potential

function encodes constraints on people travelling, job availability and cost of travel by making

use of the entropy-maximising argument (Alan Wilson, 2010). The Bayesian framework of SIM

and SDE model calibration allows us to incorporate random unknown e↵ects a↵ecting travel

demand and propagate the uncertainty into our inference. We exploit the limiting (equilibrium)

distribution of the SDEs, which is a Boltzmann-Gibbs measure to define a likelihood over the

latent sizes (job availability) driving travel demand. Several sophisticated MCMC schemes and

computational tricks are employed to infer the joint SIM parameter and latent size posterior

while dealing with a doubly intractable likelihood. We argue that this approach can be used

as a basis for a decision-making tool for urban planners and policy makers.
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1.2.1 Synopsis

This thesis aims to answer the following research question:

How well can the origin-destination matrix of Londoner commuter movements with unknown

destination demand be reconstructed under the influence of uncertainty?

Chapter 1 introduced the societal need for travel demand monitoring and forecasting and

provided a critical review of existing work in travel demand modelling. Limitations of previous

approaches were identified and a new approach was suggested based on the work of (Ellam

et al., 2018) that addressed the shortcomings of existing approaches. In Chapter 2 the spatial

interaction model is mathematically formulated and its relation to the Harris and Wilson

ODEs is established. The stochastic treatment of the systems of these ODEs is outlined

and the equilibrium distribution of the state variable is derived. Additionally, a potential

function is derived and modified to ensure a well-defined system of SDEs is defined. At the

end of the chapter we provide a derivation of the Poisson regression model, which is used as a

benchmark model in deterministic model calibration. In Chapter 3 we describe the Bayesian

model calibration framework, the computational strategy we employ to simplify the inversion

of the system of SDEs, and the posterior inference MCMC schemes. Chapter 4 is devoted to a

London commuter case study that we apply our model on. We include implementation details

such as cost matrix computation and discuss our key results when the model is applied to zero,

low and high-noise scenarios. We also validate the reconstructed flow matrix with the actual

origin-destination matrix. Finally, in Chapter 5 we conclude our findings and suggest directions

for future research that will be carried out during the PhD. In Appendices, the reader can find

relevant proofs of key theoretical results necessary to ensure our model is well-defined.

1.2.2 Contributions

We list the contributions made in this thesis. Specifically, we:

1. Introduce a novel application of stochastic spatial interaction modelling to travel demand;

7



2. Compute an informative travel cost matrix based on London’s transportation network

and benchmark its e↵ect on flow matrix reconstruction accuracy against the conventional

Euclidean distance-based cost matrix;

3. Employ the Poisson regression model to verify our model’s results in the deterministic

case;

4. Validate the estimated flow matrices for zero, low and high-noise regimes using the 2001

London commuter flow matrix;

5. Prove theoretical results to ensure that our model is well-defined (See Appendices A.1,A.2,C.3,C.4);

6. Derive estimates for the overall computational complexity of the calibration framework;

7. Develop a well-documented and extensible codebase of our model released on this GitHub

repository.
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Chapter 2

Urban travel demand modelling

2.1 Stochastic formulation of travel demand evolution

Define the number of jobs available in a transportation network as the vector of sizes W :=

{W1, . . . ,WM} 2 RM
>0. For convenience, let the log-jobs be X := {X1, . . . , XM} 2 RM

>0, where

Xj = exp(Wj) for each j 2 {1, . . . ,M}.

Let the flow of people between origin i and destination j be denoted by Tij � 0 (see Figure

2.1). It is assumed that there are N origins and M destinations and therefore a total of NM

flows. For a singly constrained transportation system, the supplies generated by the N origins

are

Oi =
MX

j=1

Tij, i = 1, . . . , N, (2.1)

and the demands generated for the M destinations are

Dj =
NX

i=1

Tij, j = 1, . . . ,M. (2.2)

Origin supplies are known whereas the destination demands are unknown and have to be

determined. The demand for destination zones is governed by the job availability in that

destination; the more jobs are available the more people are travelling/commuting to that

destination. Between two destinations zones of similar employability characteristics, people

are assumed to prefer closer zones of lower transportation cost. Hence, a third constraint is

added to reflect the finiteness of the total expenditure on transport:
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Figure 2.1: Illustration of spatial interaction in a transportation network occurring due to a

flow Tij of people between origin i of known supply and destination j of unknown size and

demand.

C =
NX

i=1

MX

j=1

Tijcij, i = 1, . . . , N, j = 1, . . . ,M. (2.3)

A final constraint is imposed on the finite ‘benefit’ (i.e. work)Wj people gain from travelling

to destination j:

B =
NX

i=1

MX

j=1

Tij log(Wj), j = 1, . . . ,M. (2.4)

In transportation applications, the origin supply can be assumed to be the residents of

origin zones whereas the destination demands are often unknown and have to be inferred

through other means i.e. variables. By following a maximum entropy argument subject to the

constraints in (2.1)-(2.4) the resulting flows become

Tij = Oi

W↵
j exp(��cij)

PM
k=1 W

↵
k exp(��cik)

, (2.5)

where ↵, � > 0 are attractiveness and cost scaling parameters and cij � 0 denotes the cost

of travelling1. The detailed derivation of (2.5) can be found in Appendix A.1. We use (2.5) to

reconstruct the full origin-destination (flow) matrix.

1The cost of travelling is abstractly defined here. A Euclidean distance between origins and destinations is

commonly used as a proxy for the cost function. In Chapter 4, we compute a shortest path distance between

any origin-destination pair in London’s transportation network.
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The destination zone will grow or contract in size (i.e. job availability) depending on

whether travel demand for them has been fulfilled or not, respectively. It is therefore reasonable

to expect that the urban transportation’s destination sizes will reach an equilibrium in some

degree, after which their sizes will not change. A suitable model that models the evolution

of these dynamics in time is the Harris and Wilson model (Harris and A. G. Wilson, 1978),

which is described by the following system of M ordinary di↵erential equations (ODEs)

dWj

dt
= ✏Wj(Dj � Wj), W(0) = w0, (2.6)

where ✏ > 0 is a responsiveness parameter and  > 0 is the ‘cost’ of accommodating hir-

ing/accommodating one more person in destination j and can be interpreted as a job compe-

tition term. The di↵erence Dj � Wj is the job capacity term and refers to a destination’s

ability to accommodate all its incoming demand.

2.2 Stochastic evolution of travel demand

A generalisation of the Harris and Wilson model is the following stochastic di↵erential equation

(SDE) with multiplicative noise

dWj = ✏Wj(Dj � Wj) dt+ �Wj � dBj, W(0) = w0, (2.7)

where B is the M -dimensional Brownian motion and � > 0 a volatility parameter. The ‘�’

operator arises from a Stratonovich SDE formulation (Pavliotis, 2014, p.59). The stochastic

dynamics described in (2.7) is an overdamped Langevin di↵usion. In the noisy regime, the

latent destination sizes’ evolution is governed by the net capacity term in the drift function

perturbed by Gaussian noise with standard deviation �
p
�t. By applying the variable transfor-

mation Xj = log(Wj), the ODEs in (2.6) can be expressed as a gradient flow. Let V : RM ! R

be a potential function and its gradient rV : RM ! RM . Define � := 2��2 and reformulate

the SDE as

dX = �✏�1rV (X) dt+
p

2��1 dB, X(0) = x0. (2.8)
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Exploiting the fact that dXj

dt = 1
Wj

dWj

dt and substituting it together with (2.1)-(2.5) in (2.6)

yields

✏�1rV (x) = �
NX

i=1

 
Oi

exp(↵xj � �cij)PM
k=1 exp(↵xk � �cik)

!
+  exp(xj)

) ✏�1V (x) = �↵�1
NX

i=1

Oi log

0

@
MX

j=1

exp(↵xj � �cij)

1

A+ 
MX

j=1

exp(xj), (2.9)

where x is a realisation of the random variable X.

Assuming that x0 is a random variable with probability density function (pdf) ⇢0(x), then

⇢(x, t) is the pdf of X(t) and the solution to the initial value problem for the corresponding

Fokker-Planck equation (Pavliotis, 2014, p.109-110):

@⇢(x, t)

@t
= r ·

�
⇢(x, t)rV (x)

�
+ ��1�⇢(x, t), ⇢(x, 0) = �(||x� x0||), (2.10)

where ⇢(x, t) 2 RM ⇥ (0,+1), and � > 0. The solution to (2.10) is very challenging to obtain

especially in the given high dimensional setting. Under some smoothness conditions outlined

in Appendix B (Pavliotis, 2014, p.110), the unique invariant distribution of ⇢(x, t) is the

Boltzmann-Gibbs measure given by

⇢1(x) =
1

Z
exp

�
��V (x)

�
Z :=

Z

RM

exp
�
��V (x)

�
dx. (2.11)

Note that the normalising constant Z in (2.11) is finite since the potential function in (2.9)

satisfies the smoothness criterion (B.1) and therefore does not yield a well-defined probability.

We follow the approach by (Ellam et al., 2018) and modify the potential function to include

a confining term that ensures that the systems of SDEs in (2.11) is well-defined. Although

the confining criterion is su�cient for the SDE to be well-defined, controlling the rate of

convergence criterion in (B.2) is crucial in ensuring that the convergence occurs su�ciently

fast.
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2.3 Potential function decomposition

The Boltzmann-Gibbs measure can also be derived from a maximum entropy argument (La-

sota and Mackey, 1994; Alan Wilson, 2010). The derivation can be found in Appendix A.2.

This view allows for a natural interpretation of the potential function’s terms as economic

constraints. A potential function with three components is considered:

✏�1V (x) = VUtility(x) + VCost + �VAdditional(x), (2.12)

where � > 0 is an additional parameter. The utility potential describes the financial incen-

tives (jobs) emerging from utility-maximising choices, the cost potential imposes restrictions

on potential benefit that can be gained from travelling and the additional potential can be

interpreted as the e↵ect of transportation network policies or background travel demand. Let

X 2 RM be a random variable that is subject to the following constraints

E[VUtility(x)] = CUtility,

E[VCost(x)] = CCost,

E[VAdditional(x)] = CAdditional,

9
>>>>=

>>>>;

(2.13)

where Ci 2 R. Then, the maximum entropy distribution ofX can be written as the Boltzmann-

Gibbs measure whose density is given by (2.11) and the corresponding potential function is

(2.12).

2.3.1 Utility potential

The work of (Williams, 1977) highlighted the correspondence between the entropy-maximising

or information-minimising argument and the utility-maximisation argument, which was popu-

larised in econometric literature (Anas, 1983) and (Jong et al., 2007). Therefore, we motivate

a utility-maximisation term defined by the utility potential, where each individual aims to

maximise his/her access to a big job market while minimising the total cost they incur when

travelling to that market (i.e. destination).
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A suitable candidate for a utility potential which reflects a transportation user’s benefit of

travelling to destination zone j is given by consumer surplus. Consumer surplus is the area

under the demand curve (Williams, 1977):

Vutility(x) = �
Z x

x0

�
D1(x

0), . . . , DM(x0� dx0

= �↵�1
NX

i=1

Oi log

0

@
MX

j=1

exp(Uij(xj))

1

A+ constant (2.14)

where the line of integration is defined along a path in log-size-space and the deterministic

utility function is defined as

Uij := ↵xj � �cij 8 (i, j) 2 {1, . . . , N}⇥ {1, . . . ,M}.

The generalised version of (2.14) is derived in Appendix C.1. The utility function Uij can be

obtained from random utility maximisation. Define the stochastic utility function for a choice

made at origin i

Ũij = Uij + ⇠ij, (2.15)

where ⇠ij are independent and identically distributed Gumbel random variables with zero mean

and scale one. Then, under the random utility maximisation framework the expected utility

of a unit flowing from origin i to destination j is

E

max

1jM
Ũij(xj)

�
= log

0

@
MX

j=1

exp
�
Uij(xj)

�
1

A+ c, (2.16)

where c ⇡ � log(log(2)) is the Euler-Mascheroni constant (Chang, 2015). A detailed proof is

provided in Appendix C.2. The utility potential then becomes

VUtility(x) = ↵�1
NX

i=1

OiE

max

1jM
Ũij(xj)

�
+ c, (2.17)

Equation (2.16) depicts a connection between the aggregated SIM and the disaggregated

DCMs. Note also that in the limit of ↵! 0 it holds that VUtility(x)!1 (i.e. the potential is
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non-constant). Also, the utility potential is tightly bounded:

↵�1
NX

i=1

Oi

⇢
max

1jM
Uij(x)

�
 VUtility(x)  ↵�1

NX

i=1

Oi

⇢
max

1jM
Uij(x) + log(M)

�
(2.18)

The derivation of the bounds is shown in Appendix C.3. The limit of the utility potential

as xj ! �1 for some j 2 {1, . . . , N} may still be finite, which violates criterion (B.1) in

Appendix B. Therefore, an additional term needs to be added to prevent destination “zones

from collapsing from a lack of activity” (Ellam et al., 2018).

2.3.2 Cost potential

The purpose of the cost potential is to prevent each destination zone from growing uncontrol-

lably and becoming too large in size. The cost potential has to be an increasing function to

reflect the fact that the running costs of a destination increases with the number of people

gathered at that destination. With the existing potential function (2.9) in mind, a suitable

candidate for the cost potential is

VCost(x) =
MX

j=1

exp(xj), (2.19)

with
@VCost(x)

@xj
= exp(xj).

2.3.3 Additional potential

The additional potential term must satisfy criteria (B.1) and (B.2) so that

lim
xj!�1

V (x) = +1,

and the rate of growth at infinity must be su�ciently high. Contrary to the cost potential,

the additional potential term ensures that every destination zone receives non-zero demand,

which prevents the zone’s size to collapse from lack of activity. A suitable and mathematically

convenient potential is
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Figure 2.2: Illustration of potential function as appearing in the numerator of (2.11) for two

competing destination zones (x 2 R2
<0) plotted for four di↵erent configurations of ↵ and

� = 0.00143.

VAdditional(x) =
MX

j=1

xj, (2.20)

with
@VAdditional(x)

@xj
= 1 8 j.

2.4 Model adjustments

Based on the potentials defined in the three previous sections, the modified potential function

becomes

✏�1V (X) = �↵�1
NX

i=1

Oi log

0

@
MX

j=1

exp(↵xj � �cij)

1

A

| {z }
Utility

+
MX

j=1

exp(xj)

| {z }
Cost

� �
MX

j=1

xj

| {z }
Additional

, (2.21)

which satisfies both criteria in Appendix 2.13. We note that the computational cost of evalu-

ating (2.21) for a given choice of parameters and latent log-sizes is O(NM). The Stratonovich

SDE is adjusted to

dWj = ✏Wj(Dj � Wj + �) dt+ �Wj � dBj, W(0) = w0. (2.22)

Equation (2.22) corresponds to the original SDE in (2.7) with a constant positive e↵ect on

the drift function. The original deterministic Harris and Wilson model can be obtained in the
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limit �, � ! 0. The stationary points of (2.22) are obtained by solving

MX

j=1

Oi
exp(↵xj � �cij)PM
k=1 exp(↵xk � �cik)

= Wj � � j = 1, . . . ,M, (2.23)

which in the case of � ! 0 coincide with the stationary points of the deterministic ODEs in

(2.6). Despite the similarities in behaviour between the ODE and SDE in low-noise regimes,

their asymptotic behaviours di↵er significantly for large enough �. The deterministic model

will converge to a stable point that is heavily determined by the initial condition (Dearden

and Alan Wilson, 2011). However, the uniqueness of the stable point is governed by the

convexity of the potential function, as illustrated in (C.4). Also, the work of (Dearden and

Alan Wilson, 2011) highlighted the fact that the potential function may exhibit irregularities

caused due to discontinuities existing between even slightly di↵erent parameter configurations.

On the contrary, the stochastic model will converge to a statistical equilibrium independent

of the initial condition. In depth of time (t ! +1), the stochastic model will spend more

time at lower values of V (x) around the stable points determined by (2.11). This calls for

theoretical results to be proven in order to better understand potential function convexity and

discontinuity in noisy regimes.

In the limit � ! +1 equation (2.11) collapses to a Dirac distribution centred around

the global minimum of V (x), i.e. the maximum a posteriori (MAP) estimate of (2.11). The

MAP clearly does not constitute a good fit for the observed sizes. As � ! 0, equation (2.11)

converges to an improper uniform distribution (Ellam et al., 2018). The potential function

appears to be sensitive to the values of ↵, � instead of the initial conditions, as illustrated

in Figure 2.2. For small values of ↵, job availability is approximately the same for the two

destination zones, whereas for larger values of ↵, job availability is more dispersed around the

two zones.

We make another simplification by fixing the cost parameter . It follows from (2.22) that

at equilibrium the total demand must match the total supply (Harris and A. G. Wilson, 1978).

17



Hence,


MX

j=1

�
Wj � �

�
=

MX

j=1

Dj

=
MX

j=1

NX

i=1

Tij

=
NX

i=1

Oi, (2.24)

where the coe�cient of  is assumed to be known. Therefore,  can be obtained by solving

(2.24):

 =
1

K

0

@
NX

i=1

Oi + �M

1

A , (2.25)

where K :=
PM

j=1 Wj. We set K = 1, although its choice is arbitrary. Parameter � can

be specified relative to the size Wj0 of the smallest zone j0 since with no inward flows since

Wj0 = �/.

2.5 Benchmark model

In this section, we introduce a simpler model to benchmark our parameter estimates of ↵ and

� in a deterministic setting.

Assume that each Tij is a Poisson-distributed random variable. Further assume that the

table Tij can be decomposed as Ŝij = aibj 8 i, j such that Ŝij := E[Tij] and Ŝij is the

maximum likelihood estimate (MLE) of the expected flows. This assumption originates from

a probabilistic view of the flows

Tij = ⇡ijT, (2.26)

where T is the total flow of the system and

NX

i=1

MX

j=1

⇡ij = 1. (2.27)

Under this view

⇡ij = ⇡(+,j)⇡(i,+) :=

0

@
NX

i=1

⇡i,j

1

A

0

@
MX

j=1

⇡i,j

1

A , (2.28)
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which is known as the model independence assumption, and ai = E[
p
T⇡(i,+)], bj = E[

p
T⇡(+,j)]

8 i, j. Substituting (2.28) in (2.26) and taking logarithms yields

log(Tij) = log(T ) + log(⇡(+,j)) + log(⇡(i,+)) + zij, (2.29)

where
PN

i=1 log(⇡(i,+)) =
PM

j=1 log(⇡(+,j)) = 0. The model in (2.29) resembles the kernel a

Poisson generalised linear model (Oshan, 2016). Without loss of generality let T = 1, and Tij

be equal to (2.5). Then (2.29) takes the following form:

log(Tij) = log(Oi) + ↵ log(Wj)� �cij � log

0

@
MX

k=1

W↵
k exp(��cik

1

A , (2.30)

where the first and last terms are constants for any given i 2 {1, . . . , N}. We use the

Python library named PySal found in this GitHub repository to calibrate the model in (2.30).

Model calibration is achieved e�ciently by inducing sparsity on the large flow matrix (Oshan,

2016). We then compare the inferred parameters against the deterministic Harris and Wilson

model. This helps us verify the validity of our claims in Chapter 4. However, our model is

fundamentally di↵erent than the Poisson regression one in that we don’t leverage the flow

matrix to calibrate our model. Therefore, any inferred flow matrix constructions between the

two models would be perplexing.
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Chapter 3

Model calibration

This chapter is devoted to model calibration, which is also known as solving the inverse prob-

lem. Model calibration involves determining ↵ and � from observational data. The scaling

factor ↵ reflects an individual’s preference of popular destinations, while the scaling factor �

depicts the individual sensitivity to high travel cost. As outlined in Chapter 1, traditional ap-

proaches for solving the inverse problem include the use of discrete choice models (McFadden,

1980; McFadden and Train, 2000), which are not computationally scalable due to the large

volumes of flow data required for training.

3.1 Bayesian framework

We adopt a Bayesian approach to parameter and latent variable inference that incorporates un-

certainty about observational data and parameter values by treating them as random variables

with probability distributions. The probability distributions maintain a collection of beliefs

about the true parameter/latent variable values, each weighted by a probability to reflect the

uncertainty about involved about the knowledge of the true values. Prior to any data obser-

vation, a Bayesian model would only express prior beliefs about the true parameter/latent

variable values. Under the influence of a likelihood, these beliefs are ‘corrected’ and updated

into posterior beliefs. Posterior estimates can then be elicited from the posterior distribution’s

mean or mode and uncertainty can be expressed by the standard deviation of that posterior.

We now formalise the aforementioned arguments. Let⇥ = (↵, �) 2 R2
>0 andX = log(W) 2

RM be random variables. We leverage the fact that the equilibrium position of the latent

sizes follows the Boltzmann-Gibbs measure in (2.11), i.e. X ⇠ ⇢1. Define Y 2 RM
>0 to
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be the observational data on job availability for each destination zone. We then incorporate

uncertainty through model discrepancy (error) terms E and express prior beliefs about the true

parameters and latent variables. Therefore, we assume that the observed job market structure

is informed by the latent destination sizes W subject to some multiplicative noise E1:

log(Y) = log(W) + log(E), (3.1)

where log(E) ⇠ N (0,⌃) and ⌃ 2 RM⇥M is a positive definitive covariance matrix. The

existence of a model discrepancy term in the latent sizes is motivated by the fact that the

Boltzmann-Gibbs measure may provide a poor data fit to the data. In addition, we assign

prior distribution over the parameters, which we denote by ⇡(✓). We also define a prior over

the latent sizes we denote by ⇡(x|✓). The uncertainty about the true (observed) sizes also

induces a distribution ⇡(y|x) over Y,i.e.

⇡(y|x) = N(x, log(e)). (3.2)

Note that Boltzmann-Gibbs measure has a dependence on ✓ and therefore we make it explicit:

⇡(x|✓) = 1

Z(✓)
exp

�
��V✓(x)

�
Z(✓) :=

Z

RM

exp
�
��V✓(x)

�
dx. (3.3)

We can now compute the joint posterior distribution over the parameters and latent vari-

able. By Bayes rule it follows that

⇡(x,✓|y) = ⇡(x,✓,y)

⇡(y)

=
⇡(y|x,✓)⇡(x,✓)

⇡(y)

=
⇡(y|x,✓)⇡(x|✓)⇡(✓)

⇡(y)

= ⇡(✓)|{z}
parameter prior

1

⇡(y)| {z }
marginal likelihood

⇡(y|x)| {z }
latent likelihood

1

Z(✓)
exp(��V✓

�
x)
�

| {z }
parameter likelihood

(3.4)

where the last step follows from substitution of (3.3). Posterior inference using (3.4) is non-

trivial as the normalising terms ⇡(y) and ⇡(Z(✓)) are unknown. Specifically, the ✓-dependence

1The error is multiplicative to preserve positivity of the latent sizes
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of the function Z(✓) requires integration over a complex high dimensional space, which is a

notoriously di�cult problem (Murray, Ghahramani, and MacKay, 2012). The normalising

constant in the parameter likelihood is necessary to penalise overly complex models that may

lead to over-fitting and suboptimal parameter configurations. We devote the next section to

devising a computational strategy to deal with this problem and compute the joint posterior

density up to the normalising constant ⇡(y).

3.2 Computational simplifications

We resort to numerical simulation procedures and use MCMC schemes to compute low-order

summary statistics of the form

E
⇥
g(X,⇥)

⇤
=

Z

R2
>0

Z

RM

g(x,✓)⇡(x,✓|y) dx d✓, (3.5)

where g(·, ·) is the integrable function of interest. Examples of low-order summary statistics

include the mean, variance and density of the posterior marginals.

3.2.1 Laplace approximation

Our first strategy involves approximating the normalising constant Z(✓) using a second-order

Taylor expansion of the potential function around the global minima m✓. The quadratic Taylor

approximation is given by (Rijk and Vorst, 1983, p.83):

V✓(x) ⇡ V̂✓(x) = V✓(m✓) +
1

2
(x�m✓)

T �V✓(m✓) (x�m✓) . (3.6)

We now leverage the fact that the integral in (3.3) has significant contributions in the neigh-

bourhood of m✓ since exp(��V✓(x)) > 0 only when V✓(x) < 0. Therefore, we substitute (3.6)

into the integral in (3.3) to obtain a su�cient approximation for Z(✓):

Z(✓) ⇡
Z

RM

exp(��V̂✓(x) dx

= exp
⇣
��V̂✓(m✓)

⌘Z

RM

exp

✓
��

2
(x�m✓)

T �V✓(m✓) (x�m✓)

◆
dx. (3.7)
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We apply yet another approximation known as the Laplace or saddle point approximation

(Butler, 2007, p.83) to evaluate the integral in (3.7). Therefore, (3.7) becomes

Z(✓) ⇡ exp
⇣
��V̂✓(m✓)

⌘ �
2⇡��1

�M/2

|�V✓(m✓)|1/2
, (3.8)

where the determinant of the Hessian of the potential in the denominator of (3.8) is given by

(B.5). The approximation is asymptotically accurate as � ! +1, which corresponds to low-

noise regimes. The quality of the approximation depends on two factors. First, the peakedness

of the exponential term outside the integral occurs at m✓, which we have shown to hold true.

Second, the degree to which the integrand is ‘quadractic-looking’. The second condition holds

if and only if the potential function is convex in the neighbourhood of m✓. In Appendix C.4 we

derive the necessary conditions for the potential function to be convex in the two dimensional

case (N = M = 2). It is evident that the potential function is convex for specific choices of ↵

and latent sizes x. We argue that in all but special cases the potential function is convex and

therefore has a unique global minimum which we can numerically compute.

A suitable and inexpensive numerical optimisation routine is the Newton-based limited

memory Broyden-Flether-Goldfarb-Shanno (L-BFGS) (Nocedal and Wright, 2006, p.136),

which however requires proper initialisation. We run the L-BFGS procedure for M di↵erent

x initialisations and parameter configurations to robustly derive the global minima of V✓(x).

We summarise the computation of Laplace approximation in Algorithm 1. The computational

complexity of Algorithm 1 is O(M ⇥ CLBFGS + CCholesky), where CLBFGS is the unknown

computational complexity of the L-BFGS algorithm. We assume that CLBFGS ⇡M2 (Saputro

and Widyaningsih, 2017) and CCholesky ⇡ M3, which makes the asymptotic computational

complexity O(M3).

3.2.2 Unbiased importance weight estimation

In high-noise regimes, the Laplace approximation in (3.8) performs poorly and therefore we

cannot obtain accurate joint posterior estimates. Hence, we seek a more robust to noise

estimator of (3.5). In fact, an unbiased estimate of Z(✓) is given by an average of a batch of
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Algorithm 1 Laplace approximation algorithm for the Boltzmann-Gibbs measure normalising

constant in low-noise regimes.

1: Function call: Laplace(✓0,x(0),M)

2: Input: Augmented parameter vector ✓0 = (↵, �, �, �,, ✏), potential function V✓(x), num-

ber of destinations M .

3: Output: log(Z(✓)) and its sign.

4: # Start of algorithm

5: Initialise m✓  x(0) and V✓(m✓) V✓(x(0) using (2.21).

6: for k 2 {1, . . . ,M} do

7: Initialise xi0  log(�) 8 i 6= k and xi0  log(1 + �) for i = k.

8: Use the L-BFGS optimiser to find x0  argminx2RM V✓(x) and V✓(x0) using x0 as the

initialisation.

9: if V✓(x0) < V✓(m✓) then

10: Update m✓  x0 and V✓(m✓) V✓(x0) using (2.21).

11: end if

12: end for

13: Compute the Hessian matrix H rV✓(m✓) using (C.10)-(C.11).

14: Find the Cholesky decomposition L that satisfies H LLT .

15: Compute the log-determinant log
�
det(H)

�
 

PM
n=1 Lnn.

16: Evaluate Z(✓) ��V✓(m✓) +
M
2 log(2⇡��1)� 1

2 log
�
det(H)

�
.
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importance weights

w(x) =
exp(��V✓(x))

q(x)
, (3.9)

where q is the density of the proposal distribution and x are draws from q. However, we note

that

E


1

w(x)

�
= E


q(x)

exp(��V✓(x))

�

� 1

E
h
exp(��V✓(x))

q(x)

i

6= E


1

Z(x)

�
, (3.10)

where the last step follows from Jensen’s inequality. Therefore, the reciprocal of our importance

weight estimator in (3.9) is a biased estimated estimator of Z(✓). We follow the approaches

by (Murray, Ghahramani, and MacKay, 2012),(Lyne et al., 2015), and (Wei and Murray,

2016) to debias this estimator. The Russian roulette truncation can be leveraged to obtain

unbiased estimates of 1/Z(✓). Define a sequence of estimators ⌫ = {⌫i : i � 0} such that

limi!1 E[⌫i] = 1/Z(✓). Draw a random integer Ts in independent of ⌫ and then take the sum

S = ⌫0 +
KX

i=1

⌫i � ⌫i�1

P(Ts � i)
. (3.11)

For the sake of simplicity we set P(Ts � i) / i�1.1. Then, E[S] = 1/Z(✓) if and only if

E
⇥
|⌫0|+

P1
i=1|⌫i � ⌫i�1|

⇤
 1 (Wei and Murray, 2016). We advocate for the increasing

averages estimator proposed by (Lyne et al., 2015)

⌫i =
i+ 1

Pi
k=0 w(x̂

(k))
, (3.12)

where each x(k) 8 k = 0, . . . , i is an independent draw from the q density. Although S

constitutes an unbiased estimator of the reciprocal of the normalising constant, it has high

variance since the sum in (3.11) does not always consist of positive terms. (Lyne et al., 2015)

addresses the ‘sign problem’ by storing |S| at every time step while monitoring sign(S), where

sign(S) = �1 if S < 0 and sign(S) = +1 if S � 0. The cases when S is negative introduce high

variability in the estimator in (3.11), which renders its use in an MCMC posterior sampling
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scheme impractical. This is because high variability in 1/Z(✓) can lead to low acceptance rates

and highly dependent posterior samples.

Fortunately, annealed importance sampling (AIS) can alleviate the estimator’s high vari-

ance by augmenting the state-space from (X,⇥) to (X,⇥,⌦) (Neal, 1998). Therefore, we aim

to construct a sequence {X(i),⇥(i),⌦(i)}ni=1 such that

E
⇥
g(X,⇥)|Y = y

⇤
= lim

n!+1

Pn
i=1 ⌦

(i)g(X(i),⇥(i))Pn
k=1 ⌦

(k)
, (3.13)

where ⌦(i) 2 {�1, 1} is equal to the sign(S). The suitability of this estimator for the reciprocal

of the normalising constant Z(✓) is limited to high-noise regimes. This is because in low-noise

regimes the Boltzmann-Gibbs measure is asymptotically concentrated around a Dirac mass,

which renders precise importance sampling challenging.

The expectation in (3.13) is defined with respect to the posterior density p0(x,✓) :=

⇡(x,✓|y). We define a sequence of other distributions p1(x,✓) to pn(x,✓) such that pj(x,✓) 6= 0

whenever pj�1(x,✓) 6= 0. We also need a function fj(x,✓) that is proportional to pj(x,✓) and

a way to draw independent samples from pn. Finally, we require n�1 Markov chain transitions

Tj that leave pj invariant. Fix f0 := exp(��V✓(x)) to give the function of interest and fn to

be a function proportional to f0 whose distribution we can sample from. We then let

fj(x,✓) = f0(x,✓)
tjfn(x,✓)

1�tj , (3.14)

where 1 = t0 > t1 > . . . , tn = 0 are the temperatures we use to anneal the densities. In

Appendix C.5 we show that a suitable initialisation for AIS that generates independent samples

of x is

xj ⇠ log
⇣
�
�
�(� + 1/M), 1/�

�⌘
8 j 2 {1, . . . ,M} (3.15)

and a suitable corresponding function log(fn) is

� �V 0
✓(x) := lim

↵!0,�!0
��V✓(x) = �

MX

j=1

exp(xj)� �(� + 1/M)
MX

j=1

xj (3.16)
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According to (Neal, 1998), the i-th importance weight is given by

w(i) =

Qn�1
j=0 fj(x

(j),✓)
Qn

k=1 fk(x
(k�1),✓)

=

Qn�1
j=0 f0(x

(j),✓)tjfn(x(j),✓)1�tj

Qn
k=1 f0(x

(k�1),✓)tkfn(x(k�1),✓)1�tk
, (3.17)

where the last step follows by substitution of (3.14). The Markov chain transitions are chosen

to be the transition kernel of the Hamiltonian Monte Carlo (HMC) scheme, which we explore

in the next section. We summarise the AIS scheme in Algorithm 2. Overflow problems are

avoided by performing computations in log-space. We note that line 11 of the algorithm follows

by substitution of (2.21) and (3.16) in (3.17). By inspection, it is clear that the asymptotic

complexity of AIS is O(LNMnpnt), where np is the number of particles/weights generated and

nt is the number of temperatures used in annealing. The complexity of HMC(x(0),✓0,✏,L,M) in

step 12 will be shown to be O(LNM).

We can now devise an algorithm to obtain unbiased, variance-reducing estimates of 1/Z(✓).

The pseudo-code is provided in Algorithm 3. The resulting computational complexity is

O(KLNMnpnt), where K is the number of stopping times/truncations of the (in)finite se-

ries in (3.11).

3.3 Latent size posterior sampling

Posterior inference in the high-dimensional setting we have described in the previous sections

of this chapter is challenging. In order to avoid slow exploration of the state space achieved by

random-walk behaviour we resort to e�cient sampling schemes. The latent log-size posterior

marginal in (3.3) lends itself to HMC sampling. The reason is that the Boltzmann-Gibbs

measure resembles the canonical distribution from statistical mechanics, which itself resembles

the joint distribution of the Hamiltonian (Neal, 2012):

P (q,p) =
1

Z
exp(�H(q,p)/T ) =

1

Z
exp(�U(q)/T ) exp(�K(p)/T ), (3.18)

where H(q,p) := U(q) +K(p) is the total Hamiltonian energy, U(q) is the potential energy

at a given position q and K(p) is the kinetic energy for a given momentum p. The variable
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Algorithm 2 Annealed importance sampling algorithm used to reduce the variance of the

unbiased increasing averages estimator for the Boltzmann-Gibbs measure normalising constant

in high-noise regimes.

1: Function call: AnnealedImportanceSampling(x(0),✓0,np,nt,✏,L,M)

2: Input: Latent log-size initialisation x(0), Augmented parameter vector ✓0 =

(↵, �, �, �,, ✏), potential function V✓(x), modified potential function V 0
✓(x), number of

particles/weights np, number of temperatures for annealing nt, leapfrog step size ✏, num-

ber of leapfrog steps L, number of destinations M .

3: Output: log(W).

4: # Start of algorithm

5: Define temperatures t for annealing by generating nt equally spaced scalars in the range

[0, 1].

6: Initialise AIS weights log(w(0)
j ) � log(np) 8j 2 {1, . . . , np}.

7: for i 2 {1, . . . , np} do

8: Sample x(0) from log
⇣
�
�
�(� + 1/M), 1/��

�⌘
.

9: Compute V0  V 0
✓(x

(0)) and Vn  V✓(x(0)) using (2.21),(3.16).

10: for j 2 {1, . . . , nt} do

11: Update log(w(j)) log(w(j)) + (tj � tj�1)(V0 � Vn) using (3.17).

12: Generate proposal x(j+1)  HMC(x(0),✓0,✏,L,M) using 4.

13: end for

14: end for
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Algorithm 3 Algorithm for Russian roulette random series truncation of an importance weight

estimator for the normalising constant of the Boltzmann-Gibbs measure in high-noise regimes.

1: Function call: ImportanceWeightUnbiasedEstimator(x(0),✓0,K,np,nt,✏,L,M)

2: Input: Latent log-size initialisation x(0), augmented parameter vector ✓0 = (↵, �, �, �,, ✏),

random stopping time K, potential function V✓(x), modified potential function V 0
✓(x),

number of particles/weights np, number of temperatures for annealing nt, leapfrog step

size ✏, number of leapfrog steps L, number of destinations M .

3: Output: log(E[S]) and sign(E[S])).

4: # Start of algorithm

5: Initialise K dimensional w(j) and log(⌫) sequences.

6: for i 2 {1, . . . , K} do

7: Compute log(w(j)) AnnealedImportanceSampling(x(0),✓0,np,nt,✏,L,M).

8: end for

9: for i 2 {1, . . . , K} do

10: Compute log of increasing averages estimator log(⌫i) log(i+ 1)� log(
Pi

j=0 w
(j))).

11: end for

12: for i 2 {1, . . . , K} do

13: Recursively update estimator E[S]  ⌫0 + log(
PK

j=0 exp
�
log(⌫j)� log(⌫j) + 1.1 log(j)

�

and store its sign.

14: end for
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of interest (in our case x) is represented by q and U(q) defines the negative log likelihood of

that variable. The kinetic energy of the system is defined by

K(p) = pTM�1p/2, (3.19)

where M is a positive semi-definite ‘mass matrix’ of the particle moving in the physical system.

We set M = I for simplicity. Momentum variables are drawn from N(0, I). The Hamiltonian

energy is derived from the Hamiltonian dynamics of a physical system that describes the

motions of particles inside a multidimensional plane. Therefore, HMC has a natural and

intuitive interpretation which fits many problem areas.

We focus on two fundamental properties of HMC sampling. First, the Hamiltonian energy

is (approximately) conserved regardless of any movement in the (q,p)-space. This results to an

acceptance probability of any given proposal being very close to one. Contrary to traditional

MCMC schemes such as Metropolis-Hastings, a high acceptance rate for an e�cient exploration

of the posterior provided that the proposals are carefully constructed. Secondly, the volume

in (q,p)-space is preserved. This implies that any space transformation will leave the volume

invariant. Volume preservation prevents the acceptance rate from being a↵ected by changes in

volume.

The Hamiltonian equations describe the continuous-time dynamics of a physical system

and therefore have to be discretised. The discretisation scheme is known as the leapfrog

integrator where the state of the Hamiltonian is computed for L leapfrog steps of step size

✏. Typically, “the HMC algorithm will not get trapped in some subset of the state space,

and hence will asymptotically converge to its (unique) invariant distribution” (Neal, 1998).

However, in practise the leapfrog steps L and step size ✏ will heavily impact the ergodicity of

the HMC and have to be fine-tuned. For the purposes of this thesis we tune these parameters

by trial and error. The acceptance probability for the latent log-size posterior marginal is

aX(x
0,p0|x,p) = min

(
1,

⇡(y|x0,✓) exp(��V✓(x0)� (1/2)|p0|2)
⇡(y|x,✓) exp(��V✓(x)� (1/2)|p|2)

)
(3.20)

The computational complexity of HMC sampling is O(LNM) based on the pseudo-code in

Algorithm 4.
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Algorithm 4 Hamiltonian Monte Carlo sampling algorithm used in latent log-size posterior

marginal inference.

1: Function call: HMC(x(0),✓0,✏,L,M)

2: Input: Augmented parameter vector ✓0 = (↵, �, �, �,, ✏), potential function V✓(x),

leapfrog step size ✏, number of leapfrog steps L, number of destinations M .

3: Output: Latent posterior samples X̂.

4: # Start of algorithm

5: Initialise latent samples X̂(0)  x(0) and momentum p(0) ⇠ N(0, I).

6: Compute log(⇡(y|X̂(0))) using (3.2).

7: Compute initial log potential function V  ��V✓(X̂(0)) and its gradient gradV  

rV✓(X̂(0)) using (C.9) .

8: Compute initial log potential energy U  V + log(⇡(y|X̂(0))) and its gradient gradU  

rU(X̂(0)) using (C.9).

9: Compute initial log Hamiltonian energy H  0.5pTp+ U .

10: Set currentq  X̂(0), currentp  p(0).

11: for i 2 {1, . . . , L} do

12: Use previous position X̂(i)  X̂(i�1)

13: Make a half step for momentum currentp  currentp � 0.5✏ gradUp.

14: Make a full step for the position currentq  currentq + ✏ currentp.

15: Update log potential energy and its gradient Up  log(⇡(y|currentq))� �V✓(currentq)

and gradUp using (C.9) .

16: Make a half step for the momentum currentp  currentp � 0.5✏ gradUp.

17: end for

18: Update Hamiltonian energy Hp  0.5(currentp)T (currentp) + U(currentq)

19: Draw sample u ⇠ Uniform(0, 1).

20: if log(u) < H �Hp then

21: Update position x(i)  currentq

22: Update log potential function and its gradient V  Vp, gradV  gradVp.

23: end if
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3.4 Joint posterior sampling

In the previous sections, we have described two methods for obtaining estimates of the nor-

malising constant Z(✓) in high and low-noise regimes and a latent posterior marginal sampling

scheme. Our overall aim is to construct an ergodic Markov chain (Robert and Casella, 2013,

p.231) of latent log-size and parameter samples whose time average (3.5) and (3.13) converge

to their true posterior mean. By deriving expressions for the posterior marginals, we are able

to use a Metropolis-within-Gibbs scheme with reflective boundaries to iteratively perform X

and ⇥ updates, as outlined in (Ellam et al., 2018). Asymptotically, these updates comprise

a Markov chain that in theory leaves the joint posterior ⇡(x,✓|y) invariant. The parameter

proposals are generated using a random walk transition kernel. Reflective boundaries allow us

to constrain these proposals in the [0, 2] range by ‘reflecting’ proposals that lie outside that

range.

3.4.1 Low-noise regimes

In low-noise regimes, we leverage the Laplace approximation in (3.8) to accept/reject ⇥ sam-

ples. The Metropolis-Hastings acceptance probability for the ⇥ updates in low-noise settings

is

a⇥(✓
0|✓) = min

(
1,

⇡(y|x0,✓0)Z(✓0) exp(��V✓0(x0))⇡(✓0)

⇡(y|x,✓)Z(✓) exp(��V✓(x))⇡(✓)

)
(3.21)

The pseudo-code for the low-noise MCMC posterior sampling scheme is provided in Algorithm

5 and its computational complexity is O(nmcmcLNM + nmcmcM3) for large enough N,M .

3.4.2 High-noise regimes

In high-noise regimes, the deterministic Laplace approximation of the normalising constant

fails. As illustrated in Section 3.2.2, we obtain an unbiased variance-reducing estimator of the

reciprocal of the normalising constant using Algorithm 3. Since the likelihood is intractable

we use an we approximate it using a pseudo-likelihood, which is defined as a product of

conditional probabilities. For this reason, the MCMC scheme is known as pseudo-marginal
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Algorithm 5 Metropolis-within-Gibbs posterior sampling algorithm with reflective boundaries

using the Laplace approximation for the normalising constant in low-noise regimes.

1: Function call: MCMC-LOW(x(0),✓0(0),✏✓,✏x,L,M ,Cp,nmcmc)

2: Input: Augmented parameter initialisation ✓0(0) = (↵0, �0, �, �,, ✏), potential function

V✓(x), parameter step size ✏✓,leapfrog step size ✏x, number of leapfrog steps L, number of

destinations M , random walk covariance Cp, number of MCMC iterations nmcmc.

3: Output: Parameter posterior samples ⇥̂, latent posterior samples X̂.

4: # Start of algorithm

5: Initialise latent samples X̂(0)  x(0) and parameter samples ⇥̂
(0)  ✓(0).

6: Compute initial log reciprocal of n.c. logZinv  Laplace(✓0(0),x(0),M) using 1.

7: Evaluate initial p.f. V  V✓0(0)(x(0)) using (2.21) and its gradient gradV using (C.9).

8: Store xx x(0) and tt ✓(0).

9: for i 2 {1, . . . , nmcmc} do

10: # Perform ⇥ update.

11: Generate two-dimensional sample s ⇠ N(0, I).

12: Compute theta proposal ttp  tt + ✏✓CpsT .

13: if ttp 2 R2 \ [0, 2]2 then

14: Reflect ttp o↵ the [0, 2] boundary.

15: end if

16: if ttp 2 [0, 2]2 then

17: Set ✓0(i)[0] ttp[0] and ✓0(i)[1] ttp[1].

18: Compute updated log reciprocal of n.c. logZinvp  Laplace(✓0(i),x(i),M) using 1.

19: Compute updated p.f. Vp  V✓0(i)(x(i)) using (2.21) and its gradient gradVp using

(C.9).

20: Compute log posterior marginal for initial parameter choice pp  logZinv � V and

updated parameter choice ppp  logZinvp � Vp.
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21: Draw sample u ⇠ Uniform(0, 1).

22: if log(u) < ppp � pp then

23: Accept parameter proposal tt ttp.

24: Update initial potential function V  Vp and its gradient gradV  gradV .

25: Update initial log reciprocal of normalising constant logZinv  logZinvp .

26: end if

27: end if

28: # Perform X update.

29: Reset parameters for latent update ✓0(i)[0] tt[0] and ✓0(i)[1] tt[1].

30: Generate posterior latent log-size sample xx HMC(xx,✓0,✏x,L,M) using 4.

31: Store posterior samples ⇥̂
(i)  tt and X̂(i)  xx.

32: end for

MCMC (Andrieu and Roberts, 2009) and its applicability relies on positive estimates S(i) of

the 1/Z(✓). For that reason we cache S(i) and monitor its percentage of positive-signs. The

resulting MCMC chain consists of samples {⌦(i),X(i),⇥(i)}nmcmc
i=1 and used in (3.13) to compute

the posterior mean, where ⌦(i) := sign(S(i)). The Metropolis-Hastings acceptance probability

for the ⇥ updates is adjusted to

a⇥(✓
0|✓) = min

(
1,

⇡(y|x0,✓0)|S0| exp(��V✓0(x0))⇡(✓0)

⇡(y|x,✓)|S| exp(��V✓(x))⇡(✓)

)
(3.22)

The high-noise MCMC posterior sampling scheme is outlined in Algorithm 5 and its com-

putational complexity is O(nmcmcKLNMnpnt).

3.5 Implementation details

The model calibration framework presented in this Chapter is tailored to learning parameters ↵

and �. Learning parameters in complex noisy high-dimensional settings is challenging and over-

parametrisation can lead to identifiability and tuning problems, especially in the estimation

of Z(✓). To alleviate this problem, we restrict parameter inference in the [0, 2]2 range, as
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Algorithm 5 Metropolis-within-Gibbs posterior sampling algorithm with reflective bound-

aries using an unbiased variance reducing estimator for the normalising constant in high-noise

regimes.

1: Function call: MCMC-HIGH(x(0),✓0(0),K,np,nt,�rw,✏,L,M ,nmcmc)

2: Input: Augmented parameter initialisation ✓0(0) = (↵0, �0, �, �,, ✏), potential function

V✓(x), random stopping time K, number of AIS samples np, number of annealing temper-

atures nt, random walk standard deviation �rw, leapfrog step size ✏, number of leapfrog

steps L, number of destinations M , number of MCMC iterations nmcmc.

3: Output: Parameter posterior samples ⇥̂, latent posterior samples X̂.

4: # Start of algorithm

5: Initialise latent samples X̂(0)  x(0) and parameter samples ⇥̂
(0)  ✓(0).

6: Compute initial log reciprocal of normalising constant logZinv  

ImportanceWeightUnbiasedEstimator(✓0,K,np,nt,✏,L,M) using 3.

7: Evaluate initial p.f. V  V✓0(0)(x(0)) using (2.21) and its gradient gradV using (C.9).

8: Store xx x(0) and tt ✓(0).

9: for i 2 {1, . . . , nmcmc} do

10: # Perform ⇥ update.

11: Generate two-dimensional sample s ⇠ N(0, �rwI).

12: Compute theta proposal ttp  tt + s.

13: if ttp 2 R2 \ [0, 2]2 then

14: Reflect ttp o↵ the [0, 2] boundary.

15: end if

16: if ttp 2 [0, 2]2 then

17: Set ✓0(i)[0] ttp[0] and ✓0(i)[1] ttp[1].

18: Compute updated log reciprocal of normalising constant logZinvp  

ImportanceWeightUnbiasedEstimator(x(i),✓0(i),K,np,nt,✏,L,M) using 3.

19: Compute updated p.f. Vp  V✓0(i)(x(i)) using (2.21) and its gradient gradVp using

(C.9).
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20: Compute log posterior marginal for initial parameter choice pp  logZinv � V and

updated parameter choice ppp  logZinvp � Vp.

21: Draw sample u ⇠ Uniform(0, 1).

22: if log(u) < ppp � pp then

23: Accept parameter proposal tt ttp.

24: Update initial potential function V  Vp and its gradient gradV  gradV .

25: Update initial log reciprocal of normalising constant logZinv  logZinvp .

26: end if

27: end if

28: # Perform X update.

29: Reset parameters for latent update ✓0(i)[0] tt[0] and ✓0(i)[1] tt[1].

30: Generate posterior latent log-size sample xx HMC(xx,✓0,✏x,L,M) using 4.

31: Store posterior samples ⇥̂
(i)  tt and X̂(i)  xx.

32: end for

advocated by (Dearden and Alan Wilson, 2011) and (Ellam et al., 2018). Therefore, a weakly

informative uniform distribution is used as a parameter prior ⇡(✓). We fix the responsiveness

parameter ✏ of the potential function in (2.21) to be equal to one in an attempt to speed up

convergence to the equilibrium Boltzmann-Gibbs measure. We also set � := min1jM exp(xj),

which is justified by a non-collapsing zone with no inward flows argument. Equation (2.25)

can be leveraged to obtain a value for the job competition term or cost of assigning a person

to a job. We normalise origin supplies Oi and destination sizes Wj to 1 and the cost matrix

Cij to 7 ⇥ 105, as in (Ellam et al., 2018). This implies that the estimated flow matrix is also

normalised to 1, i.e. it expresses the transition probability from each origin to each destination.

Parameter � is scaled appropriately as determined by a preliminary study (Dearden and Alan

Wilson, 2011). Finally, � is set to 104 for low-noise regimes and 102 for high-noise regimes.

In the deterministic setting, parameters are inferred heuristically using a grid search over

[0, 2]2 where the most suitable parameter pair maximises the coe�cient of determination R2

between the actual and estimates destination sizes. For each pair of parameters the estimated
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sizes are the ones minimising the potential function in (2.9). We then use the Poisson regression

(PR) model (which requires the entire flow matrix for calibration) to compare the inferred

parameters between the two methods.

In noisy regimes, we specify independent and homogeneous observation noise covariance

as ⌃ = �I, where � is the standard deviation of the noise. Initially, we apply Laplace

estimation (See Algorithm 1) in both low and high-noise settings to obtain maximum likelihood

estimates of the parameters. Then, the Metropolis-within-Gibbs with reflective boundaries

posterior sampling scheme is employed to solve the inverse problem in a Bayesian manner.

In all scenarios, we monitor the acceptance rate of the parameter and latent size samples to

be between 40%-70% and above 90%, respectively. To ensure that we obtain independent

posterior samples, we check that the sample auto-correlation drops su�ciently fast. Moreover,

in the high-noise scenario we also monitor the signs of the unbiased estimator S for Z(✓) to

be as high as possible. Both normalising constant estimators summarised in Algorithms 1 and

3 are suitably fine-tuned. We initialise the destination sizes with the true latent sizes and the

parameters with the parameter MAP estimates obtained using a Laplace approximation. In

AIS estimation we set np = 10, nt = 50, Lp = 10 and ✏p = 0.1. Algorithm 5 is run with

✏✓ = 1, ✏x = 0.02, L = 50, and nmcmc = 20, 000 while algorithm 5 is executed with K randomly

generated positive integers, �rw = 0.3, ✏ = 0.02, L = 50, and nmcmc = 10000.

37



Chapter 4

London commuting case study

This chapter is devoted to illustrating the proposed methodology on a real-world travel demand

dataset; namely, the 2001 London commuter pattern dataset provided by the O�ce of National

Statistics 1 In this context, we demonstrate how the Boltzmann-Gibbs measure in (2.11) can

be used to simulate travel demand scenarios for any given level of uncertainty (noise) and

set of parameters ↵ and �. The attractiveness parameter ↵ reflects the benefit (i.e. job) an

individual enjoys when travelling to destination while parameter � encodes information about

the inconvenience of travel. Aggregated travel flow data for multiple modes of transportation

(cars, buses, trains etc.) is often scarce and commercially licensed when available, as argued

in Chapter 1. Our calibration approach does not utilise flow data and provides a stochastic

evolution of latent travel demand. To our knowledge spatial interaction models have been

applied to travel demand driven by economic factors (Batten and Boyce, 1987), but these

models do not monitor its stochastic evolution.

4.1 Data overview

The commuter dataset comprises of flows of commuters between London Boroughs and is

illustrated in Figure 4.1. We treat this flow matrix as ‘missing data’ and validate our inferred

flow matrix against it at the end of this Chapter. Instead, we use London ward-level population

data as origin supplies from the Greater London Authority. Borough-level job availability data

are used to represent true destinations sizes. There are 628 Wards (N = 628) and 33 Boroughs

1We choose this dataset because it is the only available London-wide origin-destination flow dataset publicly

accessible, which allows us to validate our methodology.

38

https://data.london.gov.uk/dataset/borough-commuting-patterns-census-2001
https://data.london.gov.uk/dataset/borough-commuting-patterns-census-2001
https://data.london.gov.uk/dataset/office-national-statistics-ons-population-estimates-borough
https://data.london.gov.uk/dataset/employment-industry-borough


Figure 4.1: Two-dimensional heat-map of commuter flow between London Boroughs in 2001.
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Figure 4.2: Normalised London ward-level population data from 2001 used to quantify available

supply Oi at each origin i.

Figure 4.3: Normalised London Borough-level job availability data from 2001 used to quantify

the true equilibrium destination sizes Yj at each destination j.
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(a) Greater London Area transportation network

comprising of ward origins (blue dots), destina-

tion boroughs (red dots), and A,B roads (black

lines).

(b) Greater London Area transportation network

origins (blue dots) and destinations (red dots)

connected by triangulated edges (green lines).

(M = 33) in London. Origin supplies and destination sizes are depicted in Figures 4.2 and 4.3.

During validation we aggregate our origins to Borough-level to obtain a 33 ⇥ 33 flow matrix.

We note that job availability from 2001 is used to drive the equilibrium travel demand. At

equilibrium, travel demand is Dj = Yj � �.

4.1.1 Cost matrix

The inconvenience of travel quantified by the cost matrixCij is estimated in two ways. First, we

follow the approach by (Dearden and Alan Wilson, 2011) and (Ellam et al., 2018) and compute

a Euclidean distance-based cost matrix for all NM origin-destination pairs. We recognise

that people do not travel in straight lines, but use a transportation network. Following the

approach outlined in (Dearden and AlanWilson, 2015, p.43), we construct a graph representing

London’s transportation network. Transportation costs are obtained from Meridian 2 data.

Our constructed transportation network comprises of A and B roads inside the Greater London

Area, as shown in Figure 4.4a. The vertices in the graph is the set of origins, destinations,

and vertices of each road appearing in the network. To ensure that there is a path in the

graph between every origin-destination pair, we first connect every origin and destination to

41

https://datashare.is.ed.ac.uk/handle/10283/2560?show=full


its nearest road vertex and compute the Euclidean distance to that edge in meters. Then, we

triangulate all the vertices using the Delaunay algorithm (Chen and Xu, 2004), as illustrated

in Figure 4.4b. Finally, we apply Djikstra’s shortest path algorithm using Python’s networkx

library to estimate travel costs. The shortest path cost choice is justified by a cost minimisation

argument, where individuals aim to find the fastest route to their destination. We assume

that ticket and fuel costs are negligible. The computational cost of evaluating a transportation

network-based cost matrix is O(|V |2 log(|V |)+|V ||E|), where |V | = N+M+2R are the number

of vertices, |E| ⇡ NMR are the number of edges, and R is the number of A and B roads in the

network. No computational improvement is made on the described algorithm since the cost

matrix is only computed once. Both the Euclidean-based (Ceuclidean) and transportation-based

(Ctransport) are used in inference and their discrepancy in terms of inferred parameters and

latent destination sizes is examined in the next sections. We refer to the Euclidean-based cost

matrix as ‘naive’ cost matrix and the transportation-based one as ‘informative’ cost matrix.

4.2 Deterministic analysis

First, we solve the inverse problem in a deterministic setting by performing an R2 analysis

for a 100 ⇥ 100 grid of (↵, �) pairs as advocated by (Dearden and Alan Wilson, 2011). The

coe�cient of determination is defined as

R2 = 1� SSresidual

SStotal
, (4.1)

where SSresidual and SStotal are the residual and total sum of squares, respectively. The equilib-

rium sizes are obtained from the system of SDEs in (2.8) in the limit of � ! 0 with initialisation

w0 = y. Our results are presented in Table 4.1. The informative cost matrix yields a negli-

gibly higher R2 = 0.75, which corresponds to a slightly smaller attraction e↵ects and higher

travel cost e↵ects. This is expected because the transportation network-based cost matrix is

expected to be more informative than the the Euclidean-based one. The magnitude of dis-

crepancy tells us that the former is not significantly more informative of travel inconvenience

than the latter in deterministic settings. By calibrating the deterministic Poisson regression
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Method Cost matrix ↵ � yintercept R2

SIM
Ceuclidean 1.144 0.08 - 0.74

Ctransport 1.122 0.068 - 0.75

PR
Ceuclidean 1.39 0.00765 -10.380 -

Ctransport 1.421 0.00529 -11.063 -

Table 4.1: Inferred parameters from an R2 and Poisson regression analyses using the Euclidean

distance-based and transportation network-based cost matrices in deterministic settings.

Noise level Cost matrix ↵ � log(⇡(✓|y))

Low
Ceuclidean 1.14 0.02 -177

Ctransport 1.12 0.02 -183.7

High
Ceuclidean 0.24 0.08 -26

Ctransport 0.24 0.06 -25

Table 4.2: Maximum a posterior estimates using a Laplace approximation for the normalising

constant in zero observation noise settings.

benchmark model in (2.29) using the flow matrix in Figure 4.1, we get that the transport cost

matrix had higher travel cost e↵ects and smaller attraction e↵ects than the naive cost matrix.

The existence of the yintercept does not allow for explicit parameter comparisons. However, the

Poisson regression model agrees with our model about the fact that good data fits are found

for ↵ > 1 and small enough �. The MAP estimates are provided in Table 4.2.

4.3 Maximum a posteriori estimation

In the limit of observation noise �! 0, the parameter posterior marginal becomes

⇡(✓|y) / ⇡(✓)
1

Z(✓)
exp(��V✓(x)). (4.2)

With this simplification, marginal posterior probabilities are evaluated using the Laplace ap-

proximation in Algorithm 1 for a 100⇥100 grid of (↵, �) pairs, � = 102 (high-noise regime) and
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(a) high-noise maximum a posteriori estimation using

Ceuclidean.

(b) low-noise maximum a posteriori estimation using

Ceuclidean.

(c) high-noise maximum a posteriori estimation using

Ctransport.

(d) low-noise maximum a posteriori estimation using

Ctransport.

Figure 4.4: Maximum a posterior estimates for high (left) and low (right) regimes based on

the Euclidean distance (top) and transportation network-based (bottom) cost matrices.
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� = 104 (low-noise regime) using the two cost matrices outlined in Section 4.1.1. As justified

in previous chapters, we fix � = 0.0118 and  = 1.389. We also obtain the maximum a pos-

teriori estimate of (4.2). The results are presented in Figures 4.4a - 4.4d and Table 4.2. The

low-noise models cannot explain stochastic growth, which results in inflated attraction e↵ects.

That inflation is slightly smaller for the informative cost matrix which can better explain some

of this stochasticity through higher travel cost e↵ects, as expected. Figure 4.2 depicts com-

peting e↵ects in the utility potential in (2.14), which indicates that the parameters ↵ and �

are correlated. We also note that in the low-noise regime the Euclidean cost matrix achieves a

significantly higher likelihood than the transport cost matrix whereas in the high-noise regimes

the latter matrix achieves a modestly higher likelihood. This can be attributed to the fact that

the explanation of stochastic growth coupled with a better explanation of the travel e↵ects

yields a better data fit. However, the likelihood discrepancy is not that large to make this

statement with certainty. In both low and high-noise scenarios, the generated samples for high

values of ↵ display a more concentrated size structure, as expected.

4.4 Latent priors

↵ = 0.5 ↵ = 1 ↵ = 1.5 ↵ = 2

Figure 4.5: Low-noise latent size prior samples for ↵ = 0.5, 1, 1.5, 2 and � = 0.5 using numeri-

cally obtained estimates of the global minimum of the potential function. Origin supplies and

destination sizes are shown in blue and red dots, respectively.

Next, we draw samples from the latent size prior for ↵ = 0.5, 1, 1.5, 2, � = 0.5 and � =

102, 104 to verify that we producing suitable samples. The Euclidean distance-based cost

matrix is chosen to generate samples since both cost matrices yield similar samples. For the

low-noise regime, samples are generated for the latent sizes globally minimising the potential
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↵ = 0.5, draw=1

↵ = 0.5, draw=2

↵ = 0.5, draw=3

↵ = 1, draw=1

↵ = 1, draw=2

↵ = 1, draw=3

↵ = 1.5, draw=1

↵ = 1.5, draw=2

↵ = 1.5, draw=3

↵ = 2, draw=1

↵ = 2, draw=2

↵ = 2, draw=3

Figure 4.6: High-noise latent size prior samples for ↵ = 0.5, 1, 1.5, 2 and � = 0.5 using HMC

sampling with parallel tempering. Origin supplies and destination sizes are shown in blue and

red dots, respectively.

function V✓(x). The global minima are obtained numerically using the L-BFGS algorithm at

M = 33 di↵erent initialisations. This is because in low-noise high-gamma regimes the most

significant contributions in (4.2) are attained around the potential function’s global minimum,

as argued in Section 3.2.1. For high-noise regimes, samples are drawn approximately from the

Markov chain resulting from running the HMC algorithm in 4 with parallel tempering (PT)

(Liu, 2008, p.212) for nmcmc = 10000 and five di↵erent temperatures T = 1, 1/2, 1/4, 1/8, 1/16.

Our generated samples are illustrated in Figures 4.5 and 4.6.

4.5 Posterior marginals

We proceed by specifying observation noise to be equal to � = 0.1, which corresponds to

�/ log(M) = 6% relative noise for a zone of size 1/M . The concentration of measure in the low-

noise regime does not allow us to obtain accurate importance sampling estimates. To alleviate

this problem, we apply the MCMC sampling scheme in Algorithm 5 with nmcmc = 20000 as
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Noise level Cost matrix Parameter µ �

Low Ceuclidean

↵ 1.14 0.003

� 0.025 0.003

High Ceuclidean

↵ 0.26 0.2

� 0.24 0.36

Low Ctransport

↵ 1.135 0.004

� 0.016 0.002

High Ctransport

↵ 0.233 0.125

� 0.184 0.204

Table 4.3: Inferred parameter means and standard deviations using MCMC sampling in low

and high-noise regimes for Euclidean distance-based and transportation network-based cost

matrices.

Figure 4.7: Two dimensional parameter posterior the Boltzmann-Gibbs measure collapses to

in the low-noise regime.
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Figure 4.8: Low-noise parameter posterior empirical distributions using the Euclidean distance-

based cost matrix.
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Figure 4.9: Low-noise latent destination size posterior visualisation using the Euclidean

distance-based cost matrix. Upper (µ + 3�) and lower (µ � 3�) credible interval bounds

are represented by green and blue rings, respectively.

(a) True destination sizes versus latent size posterior

mean predictions plot for the low-noise regime.

(b) Posterior mean latent size residuals versus latent

size posterior mean predictions plot for the low-noise

regime.
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Figure 4.10: High-noise parameter posterior empirical distributions using the Euclidean

distance-based cost matrix.

Figure 4.11: High-noise latent destination size posterior visualisation using the Euclidean

distance-based cost matrix. Upper (µ + 3�) and lower (µ � 3�) credible interval bounds are

represented by green and blue rings, respectively.
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(a) True destination sizes versus latent size posterior

mean predictions plot for the high-noise regime.

(b) Posterior mean latent size residuals versus latent

size posterior mean predictions plot for the high-noise

regime.

summarised in Section 3.5. However, we did not manage to get enough independent posterior

samples using either cost matrices as the auto-correlation did not decay su�ciently fast. In

fact, the auto-correlation dropped below 0.2 after more than 100 steps, giving us at most 200

independent samples. The small sample size cannot guarantee convergence in (3.5). The reason

behind this shortcoming is because of the irregular shape of the measure the Boltzmann-Gibbs

measure collapses to (see Figure 4.7). Learning a parameter posterior with a ‘boomerang’-like

shape such as the one in Figure 4.7 requires a more sophisticated transition kernel than the

asymmetric random-walk proposed in Algorithm 5. Although in theory we would expect the

mass in Figure 4.7 to resemble a Dirac mass, this is not case due to the existence of parameter

discontinuities (Dearden and Alan Wilson, 2011). As explained before, small changes in the

parameters can often lead to sudden changes in the potential function, which induces local

discontinuities and is evidenced by potential function shape irregularities. In MCMC sampling

the parameter and latent size sample acceptance rates ranges from 43-46% and above 96%,

respectively.
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We present the posterior marginals for the low-noise regime using the Euclidean cost matrix

in Figures 4.8 and 4.9 as well as the latent size prediction and residual plots in Figures 4.10a

and 4.10b. The inferred parameter values are in line with the maximum a posterior estimates

in Figures 4.4b and 4.4d. Despite the lack of observation noise in the model, the low-noise

HMC sample summary statistics of latent posteriors provides a reasonable fit to the data.

The residual plot in 4.10b indicates a degree of heteroskedasticity, which is natural since the

model’s low error structure cannot explain all of the stochastic growth. The attractiveness

e↵ects are much more dominant in the low-noise model as its inflexibility does not provide an

explanation of the stochastic growth of the destination sizes. The assumption of homogeneous

noise is not severely violated, although the predictions plot in Figure 4.10a is significantly

dispersed. Moreover, the informative cost matrix mildly suppresses the attraction e↵ects and

suggests a hypothesis under which travel inconvenience is more indicative of the flows and travel

demand. Despite the small degree of uncertainty, parameter posterior marginals in Figure 4.8

end up being overconfident (due to the concentration of measure) by not adequately accounting

for the uncertainty involved in the data generating process.

In the high-noise regime, we leverage the pseudo-marginal MCMC sampling scheme outlined

in Algorithm 5 with nmcmc = 10000. We obtain parameter and latent size sample acceptance

rates ranging from 37-44% and above 96%, respectively. The sign of the normalising constant

in (2.11) is positive 98% of the time. The empirical auto-correlation was below 0.2 after

about 20 steps, generating about 500 independent posterior samples. The posterior marginals

for the high-noise regime using the Euclidean cost matrix in Figures 4.10 and 4.11 as well

as the latent size prediction and residual plots in Figures 4.12a and 4.12b. The sampling

procedures are presented only for the naive cost matrix as there are not major discrepancies

with running the same procedures using the informative cost matrix. In terms of the inferred

parameters, they also agree with the MAP estimates in Figures 4.4a and 4.4c. Parameter

uncertainty is much higher in the high-noise regime than in the noise regime. This is because the

large noise standard deviation makes more data fit hypotheses plausible, inducing variability

in the empirical posterior marginals in Figure 4.10. The transportation network-based cost

matrix absorbs some of that variability because of the informative nature of travel cost e↵ects.
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� � Cost matrix Method Algorithm reference SRMSE

1 0 Ceuclidean R2 - 2.236

104 0 Ceuclidean Laplace MAP 1 2.297

104 0.1 Ceuclidean MCMC 5 2.204

102 0 Ceuclidean Laplace MAP 1 2.552

102 0.1 Ceuclidean MCMC 5 2.292

1 0 Ctransport R2 - 2.233

104 0 Ctransport Laplace MAP 1 2.276

104 0.1 Ctransport MCMC 5 2.208

102 0 Ctransport Laplace MAP 1 2.326

102 0.1 Ctransport MCMC 5 2.295

Table 4.4: Inferred flow matrix SRMSEs computed for various �, observation noises �, cost

matrices and methods.

However, the large noise to signal ratio makes high-noise MAP estimates provide less insights

in model calibration. A stronger prior on parameters and a more informative specification of

the error structure is required to reduce uncertainty and improve the accuracy of parameter

inference. Finally, latent size predictions are much better in the high-noise regime and there

is a smaller degree of heteroskedasticity involved, which is justified by the additional level of

uncertainty accounted for.

4.6 Flow matrix validation

In order to provide a complete answer to the research question formulated in Chapter 1, we

reconstruct the entire flow matrix by substituting the inferred parameters in (2.5), aggregate

the matrix on a borough-to-borough level (N = M = 33) and validate it against the 2001

commuter flow matrix in Figure 4.1. We use the standardised root mean square error (SRMSE)
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(Oshan, 2016) as a validation metric:

SRMSE =

qPN
i=1

PM
j=1(Tij�T̂ij)2

NMPN
i=1

PM
j=1 Tij

NM

, (4.3)

where T̂ij and Tij are the inferred and actual flow matrices. The mean of the true (observed)

flows is used to standardise the root mean square error in the numerator. Aggregating a

ward-to-borough matrix to a borough-to-borough matrix entails biases. However, we do not

concern ourselves with the absolute SRMSE and are only interested in the relative discrepancies

between SRMSEs using di↵erent methods under di↵erent noise regimes and cost matrices. We

summarise the SRMSE of each flow matrix constructed using each method outlined in the

previous Chapter in Table 4.4.

The transportation network-based cost matrix yields smaller SRMSEs than the Euclidean

distance-based cost matrix except for the latent sizes and parameters inferred from MCMC

sampling which are similar for both cost matrices. This indicates that the travel cost e↵ect are

better explained by the informative cost matrix to some extent. The low-noise regime MCMC-

inferred flow matrix seems to produce the smallest SRMSE, but is only marginally better

than its high-noise counterpart. This may be attributed to the biases induced from matrix

aggregation, so it is imperative that a ward-to-borough matrix is obtained or the analysis is

performed for a borough-to-borough OD matrix. However, the SRMSE discrepancies are not

highly significant except for the high-noise Laplace approximated MAP estimated flow matrix,

which performs poorly in matrix reconstruction for both cost matrices.
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Chapter 5

Discussion

5.1 Conclusions

In summary, we have introduced a novel application of stochastic spatial interaction modelling

to urban travel demand modelling. We have successfully simulated travel demand scenar-

ios generated from employment characteristics in London’s Boroughs and have calibrated our

models under various noise regimes. Our approach has also provided the basis for a unified

framework of travel demand evolution modelling which addresses some of the limitations of

the four step travel demand modelling framework in Figure 1.1, such as its computationally

expensive iterative procedure. Socioeconomic data together stochastic modelling of aggregate

spatial interactions has enables us to tackle trip generation and distribution while also mod-

elling the evolution of the latter (i.e. steps one and two of the four-step model in Figure 1.1).

However, we have not addressed mode and route choice. Fortunately, dis-aggregating the spa-

tial interaction model to compute OD flows by mode of transport and choice of route is fully

compatible with the framework we have laid out.

Our proposed modelling framework provides an attractive alternative to discrete choice

modelling, which relies on large volumes of commercially licensed flow data. The computational

complexities of model calibration in the presence of observation noise are linear in the number

of origins N while the low-noise MCMC is cubic in the number of destinations M and the high-

noise regime is linear inM . This is a reasonable computational cost for computing the evolution

of travel demand since a single iteration of trip distribution using the multinomial probit DCM

takes O(FNM2), where F is the sum of other factors a↵ecting the computational complexity

of the multinomial probit model (Daganzo, Bouthelier, and She�, 1977). Finally, the e↵ect
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of the informative cost matrix has not been substantial as both the inferred parameters and

SRMSEs of inferred flow matrices have only been marginally better than the ones obtained

using a naive cost matrix.

5.2 Further research

The time-varying and stochastic nature of transportation problems calls for a variety of further

research directions some of which will be pursued at the beginning of the PhD. First, there is

a number of theoretical considerations that have to be made, such as convexity of multidimen-

sional potential function maps and the presence of discontinuities (Dearden and Alan Wilson,

2011) in stochastic settings. These theoretical aspects will shed light on the stochastic model’s

behaviour and allow us to enrich/adjust our computational inference toolbox. Secondly, the

scalability of our modelling framework can improved by seeking computational savings and

ensuring the model does not su↵er from the curse of dimensionality. For example, as the

number of destinations M grows, the dimensionality of the intractable term Z(✓) increases,

which makes it harder to accurately estimate. Therefore, more tractable methods should be

developed in the future to ensure our model scales well.

Although the case has been made for economic structure driving travel demand (Batten

and Boyce, 1987), employability is not the only latent force driving doing that. Incorporating

additional latent forces and encoding them in an informative fashion in our modelling frame-

work can help our model explain more of the stochastic variation currently attributed to noise.

Moreover, the comparison between SIM and DCMs should be made more explicit. Although

the computational complexities of the two model classes were compared, flow validation and

inferred equilibrium demand was not. Such a comparison would be necessary to formally assess

and compare the e↵ectiveness of the two approaches. In addition, we only cover steps one and

two of the four-step model in Figure 1.1. The works of (A.G. Wilson, 1967) and (A. G. Wilson,

1971) have illustrated that we can dis-aggregate the SIM to account for mode of transport and

route choices. Regarding the informative cost matrix, we used London’s A and B roads to

compute a shortest-path based cost matrix. However, commuters make frequent use of the
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tube in the transport across London. Therefore, it would be more realistic to include London

underground’s map with empirical cost estimates that are adjusted for speed of transport by

taking into account average travel times.

Our proposed model is able to encode spatial but not temporal interactions of travellers.

The e↵ect of time on travel demand is crucial when estimating travel demand patterns and

their evolution in time. Our assumptions of static origin supplies, travel costs and destination

sizes are therefore limiting in dynamic travel demand modelling. One fundamental way to

address this issue is to solve the filtering problem in (2.8) by using time series data instead

of cross sectional. Also, the notion of a fixed stationary equilibrium seems unrealistic in the

context of transportation. Everyday policy changes and other types of political, economic

and business interventions introduce disturbances to the dynamical system of transportation

networks. Hence, the Harris and Wilson SDEs whose stationary equilibrium distribution (i.e.

the Boltzmann-Gibbs measure in (2.11)) is only available in closed form are not suitable for

modelling multiple dynamically changing equilibria. To account for the dynamic nature of

one or multiple equilibria, a di↵erent set of stochastic di↵erential equations should be used

(Tahmasbi and Hashemi, 2014) (Polson and Sokolov, 2015). The state variables of SDEs

such as the Hull-White SDE (Tahmasbi and Hashemi, 2014) have closed form probability

distributions at each time step, which allows us to make exact and computationally e�cient

inference potentially in real-time.
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Appendix A

Maximum entropy derivations

A.1 Spatial interaction model flow

Consider the total number of ways W of assigning T identical people/vehicles in total from

N origin zones to M destinations, where T :=
PN

i=1

PM
j=1 Tij. This is equivalent to assigning

people to “boxes” (Alan Wilson, 2013), where each box corresponds to each one of the NM

origin-destination pairs. By rules of permutations it follows that

W 0 =
T !

QN
i=1

QM
j=1 Tij!

. (A.1)

The most probable assignment Tij can be found by maximising W 0 subject to constraints

(2.1)-(2.4). Taking logs1 and using Stirling’s approximation2 (Feller, 1957, p.50-53), maximis-

ing W 0 is equivalent to maximising

log(W 0) = log(T !)�
NX

i=1

MX

j=1

log(Tij!)

⇡ T log(T )� T �
NX

i=1

MX

j=1

�
Tij log(Tij)� Tij

�

def
= T log(T )�

NX

i=1

MX

j=1

Tij log(Tij) (A.2)

Since T is constant, only the second term of (A.2) needs to be maximised. This term is

known as Shannon’s entropy in information theory and is denoted by H. Therefore, the

1Any monotonic transformation of W 0 will in fact yield the same result.
2There are a few variants of this approximation. We use log(n!) ⇡ n log(n)� n.
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entropy-maximising argument is equivalent to the information-minimising argument (Anas,

1983). Therefore, using Lagrange multipliers the objective function becomes

Lij(Tij) = �
NX

i=1

MX

j=1

Tij log(Tij)�
NX

i=1

�i

0

@
MX

j=1

Tij �Oi

1

A� �

0

@
NX

i=1

MX

j=1

Tijcij � C

1

A

� ↵

0

@
NX

i=1

MX

j=1

Tij log(Wj)� B

1

A (A.3)

Setting dLij(Tij)
dTij

= 0 8 (i, j) 2 {1, . . . , N}⇥ {1, . . . ,M} yields

0 = � log(Tij)� �i � �cij � ↵0 log(Wj)

) Tij = exp
�
��i � �cij � ↵0 log(Wj)

�
. (A.4)

Letting ↵ := �↵0 and substituting (2.1) in (A.4) yields

Oi = exp(��i)
MX

k=1

W↵
k exp (��cik)

) exp(��i) =
OiPM

k=1 W
↵
k exp (��cik)

and therefore by (A.4)

Tij =
OiW ↵

j exp
�
��cij

�
PM

k=1 W
↵
k exp (��cik)

. (A.5)

The second derivative is

d2 Lij(Tij)

dT 2
ij

= � 1

Tij
< 0 8 1  i  N, 1  j M

and therefore (A.5) is indeed a maximum.

A.2 Steady-state distribution

Let the probability density of the state X(t) of the SDE in (2.8) be denoted as ⇢(x, t) and

let ⇢1(x) denote the steady-state distribution of the state vector X. The maximum entropy

probability distribution (Jaynes, 1957) for ⇢1(x) can be found be maximising

67



H
�
⇢1(x)

�
= �

Z

RM

⇢1(x0) log

✓
⇢1(x0)

m(x0)

◆
dx0, (A.6)

subject to the following constraints:

Z

RM

⇢1(x0) dx0 = 1, (A.7)

and Z

RM

⇢1(x0)V (x0) dx = V (x), (A.8)

where H(·) is the entropy function, m(·) is the invariant measure and V (x) is assumed to

be constant. Constraint (A.7) guarantees that the probability density is well-defined while

constraint (A.8) guarantees finiteness of the mean potential function (Crooks, 2006).

The Lagrange multipliers objective function to be maximised is equal to

L(x) = �
Z

RM

⇢1(x0) log

✓
⇢1(x0)

m(x0)

◆
dx0 � �(1)

✓Z

RM

⇢1(x0) dx0 � 1

◆

� �(2)

✓Z

RM

⇢1(x0)V (x0) dx0 � V (x)

◆
(A.9)

Setting first derivative to zero yields

⇢1(x0) log

✓
⇢1(x0)

m(x0)

◆
= ��(1)⇢1(x0)� �(2)⇢1(x0)V (x0)

) log

✓
⇢1(x0)

m(x0)

◆
= ��(1) � �(2)V (x0)

) ⇢1(x0) = m(x0) exp
⇣
��(1) � �(2)V (x0)

⌘
. (A.10)

Let �(1) := log(Z) and �(2) := � = ��2 > 0. Assuming a uniform prior over probabilities

implies that m(x0) / constant. Then, (A.10) becomes

⇢1(x0) =
1

Z exp
�
��V (x0)

�
,

where Z :=
R
RM exp(��V (x0) dx0 to ensure that ⇢1(x0) integrates to 1. The above expres-

sion is the Boltzmann-Gibbs measure.
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The second derivative is negative since ⇢1(x0), V (x0) > 0 8 x0 2 RM
>0 and therefore the

Boltzmann-Gibbs measure is the candidate density with the highest entropy.
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Appendix B

Potential function assumptions

Let the potential function in (2.11) V (x) 2 C2(RM), that is V (x) is a smooth function that

is twice di↵erentiable and continuous in RM . Assumptions (B.1) (Pavliotis, 2014, p.110) and

(B.2) (Roberts and Tweedie, 1996) are made about the potential function V (x) appearing in

the Langevin di↵usion (2.8) and the Boltzmann-Gibbs measure (2.11).

(i) V (x) is confining, that is lim|x|!1 V (x) and

exp(��V (x)) 2 L1(RM), 8 � > 0. (B.1)

(ii) Let |V (x)| be bounded for |x| � S, for some S > 0. Then, 9 0 < d < 1 such that V (x)

satisfies

lim inf
|x|!1

�
(1� d)|rV (x)|2 � ��1�V (x)

 
> 0 (B.2)

Note that L1(RM) is the Banach space of measurable functions on ⌦ with L-1 norm (Pavliotis,

2014, p.308) and �V (x) = r2V (x) is the Laplace operator. Assumption (B.1) guarantees

that the normalising constant in the Boltzmann - Gibbs measure (2.11) is finite according to

Proposition 4.2 of (Pavliotis, 2014, p.110). The two assumptions (B.1) and (B.2) are su�cient

to show that the distribution of the state X(t) of the Langevin di↵usion in (2.8) converges

exponentially fast to its stationary Boltzmann-Gibbs measure (2.11), i.e. the di↵usion is expo-

nentially ergodic according to Theorem 2.3 of (Roberts and Tweedie, 1996).

The potential function defined in (2.9) is visibly twice di↵erentiable and continuous because

of its exponential term. For notational convenience define

⇤ij =
exp(↵xj � �cij)PM
k=1 exp(↵xk � �cik)

. (B.3)
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It follows that

|rV (x)|2 =
MX

j=1

����
NX

i=1

Oi⇤ij �  exp(xj) + �

����
2

, (B.4)

and

�V (x) =
MX

j=1

2

4 exp(xj)� ↵
NX

i=1

Oi⇤ij

�
1� ⇤ij

�
3

5 . (B.5)

For 0 < d < 1 we have

lim
xj!+1

�
(1� d)|rV (x)|2 � ��1�V (x)

 
= +1, (B.6)

and

lim
xj!�1

�
(1� d)|rV (x)|2 � ��1�V (x)

 
=

MX

j=1

(1� d)

����
NX

i=1

Oi⇤ij + �

����
2

| {z }
�0

+ ��1
X

j=1

Oi⇤ij(1� ⇤ij)

| {z }
�0

� �2 > 0,

since 0  ⇤ij(1� ⇤ij)  1 by definition of (B.3).
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Appendix C

Potential function derivations

C.1 Utility potential derivation

Based on the gradient flow formulation, the utility potential potential can be obtained by

solving

Dj = �
@VUtility(x)

@xj
, (C.1)

subject to the constraint in (2.2). This is achieved whenever flows satisfy

Tij(x) = Oivij(x),
MX

j=1

vij(x) = 1, vij(x) � 0. (C.2)

Equivalently, given a positive function �(·), (C.2) can be expressed as

Tij(x) = Oi

�
�
Uij(x)

�
PM

k=1 �
�
Uik(x)

� (C.3)

By inspection the utility potential must be of the form

VUtility(x) = �
NX

i=1

Oi

8
<

:fi(x) log

0

@
MX

k=1

�
�
Uij

�
1

A

9
=

; , (C.4)

for some functions fi(x) � 0. By taking the gradient in (C.4) and substituting in (C.1) we get

�
�
Uij(x)

�
PM

k=1 �
�
Uik(x)

� =
@fi(x)

@xj
log

0

@
MX

k=1

�
�
Uij

�
1

A+ fi(x)
@�

�
Uij

�

@xj

0

@
MX

k=1

� (Uik)

1

A
�1

,

8 i 2 {1, . . . , N}. The above equation holds for �(·) := exp(·) and fi(x) := ↵�1
i with each

↵i 6= 0. By (2.9), the utility function is

Uij = ↵xj + �cij 8 i, j.
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This gives a utility potential equal to

VUtility(x) = �
NX

i=1

Oi

8
<

:↵�1 log

0

@
MX

k=1

exp
�
Uij

�
1

A

9
=

; ,

where in the case of (2.14) ↵i := ↵ 8 i.

C.2 Random utility maximisation of stochastic utility

potential

Fix i 2 {1, . . . , N} and let ⇠ij ⇠i.i.d. Gumbel(0, 1). It follows that

P
✓

max
1jM

Ũij(xj)  yi

◆
= P

0

@
M[

j=1

n
Ũij(xj)  yi

o
1

A

iid
=

MY

j=1

P
⇣
Ũij(xj)  yi

⌘

=
MY

j=1

P
�
⇠ij  yi + Uij(xj)

�

=
MY

j=1

exp
⇣
� exp

�
yi + Uij(xj)

�⌘

= exp

0

@�
MX

j=1

exp
�
yi + Uij(xj),

�
1

A

= exp

0

BB@� exp

0

B@yi + log

0

@
MX

j=1

exp
�
Uij(xj)

�
1

A

1

CA

1

CCA (C.5)

where equality 3 follows from (2.15). Therefore, max1jM Ũij(xj) is a Gumbel random

variable with scale one and mean µ = log
⇣PM

j=1 exp
�
Uij(xj)

�⌘
. The expectation of the

Gumbel random variable is equal to

E

max

1jM
Ũij(xj)

�
= µ+ c = log

0

@
MX

j=1

exp
�
Uij(xj)

�
1

A+ c,
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where c is the Euler-Mascheroni constant (Chang, 2015).

C.3 Utility potential bound derivation

Fix i 2 {1, . . . , N}. Given that exp(·) is a positive function, it follows that (Nielsen and Sun,

2016)

log

0

@
MX

j=1

exp(Uij(xj))

1

A � log

✓
max

1jM

n
exp

�
Uij(xj)

�o◆

= log

 
exp

✓
max

1jM

�
Uij(xj)

 ◆
!

= max
1jM

�
Uij(xj)

 
, (C.6)

and that

log

0

@
MX

j=1

exp(Uij(xj))

1

A  log

✓
M max

1jM

n
exp

�
Uij(xj)

�o◆

= log

 
exp

✓
max

1jM

�
Uij(xj)

 ◆
!

+ log (M)

= max
1jM

�
Uij(xj)

 
+ log (M) . (C.7)

Inequalities (C.6) and (C.7) constitute the lower and upper bounds of (2.18), respectively.

C.4 Potential function convexity

By Lemma 4.3.5 of (Aggarwal, 2020, p.158), we know that if the potential function is strictly

convex, then it has a unique global minimum, i.e. its local minimum is also its global minimum.

By Lemma 4.3.4 (Aggarwal, 2020, p.154) a twice di↵erentiable map V : RM ! R is convex if

and only if it has a positive semi-definite Hessian 8 x 2 RM . Define

⇤i,j =
exp(↵xj � �cij)PM
k=1 exp(↵xk � �cik)

, (C.8)
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8 (i, j) 2 {1, . . . , N} ⇥ {1, . . . ,M}, where 0  ⇤2
i,j  ⇤i,j  1. The Jacobian matrix of the

potential function in (2.21) at the stationary points of V✓ is equal to

Jj(✓) =
@V✓(x)

@xj
= �

NX

i=1

Oi⇤i,j +  exp(xj)� � = 0, (C.9)

8 j 2 {1, . . . ,M}. The Hessian matrix of the potential function in (2.21) is

Hj,j(✓) =
@V✓(x)

@x2
j

= ↵
NX

i=1

Oi

⇣
⇤2

i,j � ⇤i,j

⌘
+  exp(xj) � 0, (C.10)

8 j 2 {1, . . . ,M} and

Hj,k(✓) =
@V✓(x)

@xjxk
= ↵

NX

i=1

Oi⇤i,j⇤i,k � 0, (C.11)

8 k 6= j 2 {1, . . . ,M}.

Consider the case for N = M = 2. Then,

↵�2 det(H) =
2X

i=1

Oi(⇤
2
i,1 � ⇤i,1)

2X

i=1

Oi(⇤
2
i,2 � ⇤i,2)

| {z }
term1

+


↵

0

@
2X

i=1

Oi(⇤
2
i,1 � ⇤i,1) exp(x1) +

2X

i=1

Oi(⇤
2
i,2 � ⇤i,2) exp(x2)

1

A

| {z }
term2

+
2

↵2
exp(x1) exp(x2)

| {z }
term3

�

0

@
2X

i=1

Oi⇤i,1⇤i,2

1

A
2

| {z }
term4

, (C.12)

By definition of (C.8), ⇤i,1 = 1� ⇤i,2 8 i = 1, 2. Therefore, term1 and term4 in (C.12) cancel

each other out. Given that 0 � ⇤2
i,1 � ⇤i,1 � �⇤i,1, it follows that

det(H) � ↵

0

@�
2X

i=1

Oi⇤i,1 exp(x1)�
2X

i=1

Oi⇤i,2 exp(x2)

1

A+ 2 exp(x1) exp(x2),

= �↵2
�
exp(2x1) + exp(2x2) + �/(exp(x1) + exp(x2))

�
+ 2 exp(x1) exp(x2)

= 2
⇣
exp(x1 + x2)� ↵

�
exp(2x1) + exp(2x2) + �/(exp(x1) + exp(x2))

�⌘
, (C.13)
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where the second step follows by the Jacobian in (C.9) being zero. Consequently, the matrix

positive semi-definite (i.e. the potential function is convex) if and only if

↵  exp(x1 + x2)

exp(2x1) + exp(2x2) + �/(exp(x1) + exp(x2)
, (C.14)

where � = minj=1,...,M xj and  = 1+ �M . The proof for arbitrary choices of N and M follows

by induction by leveraging (C.9) and is left to the reader an an exercise.

C.5 Potential function as a candidate proposal distribu-

tion

By inspection of (2.21), the cost and additional potential resemble the log of a Gamma dis-

tribution kernel. To make the utility potential vanish, we take the following limit of the log

Boltmann-Gibbs measure numerator

lim
↵!0,�!0

��VUtility(x) = lim
↵!0,�!0

�↵�1
NX

i=1

Oi log

0

@
MX

j=1

exp(↵xj � �cij)

1

A

= lim
↵!0

�↵�1
NX

i=1

Oi log

0

@
MX

j=1

exp(↵xj)

1

A

⇡ lim
↵!0

�↵�1 max
1jM

(↵xj)
NX

i=1

Oi

= � max
1jM

(xj)

⇡ �

M

MX

j=1

xj. (C.15)

The approximation in step 3 is the approximation of the log sum of exp function (Murphy,

2012, p.86) while the approximation in step 5 is a crude approximation of the maximum. It
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follows that

lim
↵!0,�!0

��V✓(x) ⇡
�

M

MX

j=1

xj � �
MX

j=1

exp(xj) + ��
MX

j=1

xj

= ��
MX

j=1

exp(xj) + �(� + 1/M)
MX

j=1

xj

/
MY

j=1

log
⇣
�
�
�(� + 1/M), 1/�

�⌘
. (C.16)

Therefore, we have derived an approximation for the log-Gamma distribution using the poten-

tial function in (2.21).
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